USN	0					10MAT1
*		F	First Semester	B.E. Degree Ex	amination. June/I	ulv 2015
2			Eng	ineering Mat	thematics – I	
Tin	ne: 3	hrs.				Max. Marks:100
Not	te: 1 2. 3.	Ans Ans Ans	wer any FIVE fu wer all objective wer to objective t	ll questions, choosin type questions only o ype questions on she	ng at least two from eac on OMR sheet page 5 o eets other than OMR w	h part. f the answer booklet. Il not be valued.
1	а	Cho	ose the correct and	PART -	<u>- A</u>	
1	a.	i)	If $v = x^{2n}$, v	is equal to	5.	(04 Marks
		-,	A) zero	B) $\frac{n!}{(2n)!}x^n$	C) $\frac{2n!}{(n-1)!} x^{n-1}$	D) $\frac{2n!}{(n-1)!} x^{n-1}$
		ii)	If $y = x^n \log x$ t	hen by Leibnitz theor	$em xy_{n+1} = $	
			A) $(n-1)!$	B) $(n+1)!$	C) n!	D) 0
		iii)	If $f(x) = \sqrt{x}$, $g(x)$	$=\frac{1}{\sqrt{x}}$ then by Cauch	ny's mean value theorem	C =
			A) $\sqrt{a-b}$	B) $\sqrt{a+b}$	C) √ab	D) $\frac{a}{b}$
		iv)	By Maclaurin's s	vertices $1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \frac{x^3}{3}$	is equal to,	
			A) e^x	B) sinx	C) cosx	D) $\log(1+x)$
	b. c.	If y State	$= \log(x + \sqrt{1 + x^2})$ e Lagrange's me	Prove that $(1 + x^2)y_1$ can value theorem,	$x_{n+2} + (2n+1)xy_{n+1} + n^2y_n$ and find the number	= 0 (04 Marks 'C' in [0, 4] whe
	d.	f(x) Exp	(x - 1)(x - 2)(x - 3)(x - 3)	-3), powers of x -1 and	d hence evaluate log _e (1	(06 Marks .1) by taking upto 4 (06 Marks
2	d. a.	f(x) Exp degr Cho	(x - 1)(x - 2)(x) and $\log_e x$ in the ree terms.	-3), powers of x -1 and wers for the following	d hence evaluate log _e (1	(06 Marks .1) by taking upto 4 (06 Marks (04 Marks
2	d. a.	f (x) Exp degr Cho i)	f(x - 1)(x - 2)(x) and $\log_e x$ in the ree terms. source the correct ans $\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$	-3), powers of x -1 and wers for the following =	d hence evaluate log _e (1 g:	(06 Marks .1) by taking upto 4 (06 Marks (04 Marks
2	d. a.	f (x) Exp degr Cho i)	f(x - 1)(x - 2)(x) and $\log_e x$ in the ree terms. solve the correct ans $\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$ A) 0 The angle between	$= \frac{-3}{B} \frac{1}{1}$	d hence evaluate $\log_{e}(1 \text{ g})$ g: C) $\pi/2$	(06 Marks (06 Marks (06 Marks (04 Marks D) π
2	d. a.	f(x) Exp degr Cho i) ii)	f(x - 1)(x - 2)(x) and $\log_e x$ in the ree terms. sose the correct ans $\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$ A) 0 The angle between	$= \frac{1}{1}$ B) 1 En radius vector and the following is a first sector and the following is a first sector and the	d hence evaluate $\log_{e}(1 \text{ g})$ g: C) $\pi/2$ he tangent to the curve r =	(06 Marks (06 Marks (06 Marks (04 Marks D) π = $\sin\theta + \cos\theta$ is
2	d. a.	f(x) Exp degr Cho i) ii)	f(x - 1)(x - 2)(x) and $\log_{e} x$ in the ree terms. sose the correct ans $\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$ A) 0 The angle between A) $\frac{\pi}{4} - \theta$	$= \frac{-3}{B} \frac{1}{4} + \theta$	d hence evaluate $\log_{e}(1)$ g: C) $\pi/2$ he tangent to the curve r = C) $\frac{\pi}{2} + \frac{\theta}{2}$	(06 Marks (06 Marks (06 Marks (04 Marks (04 Marks D) π = $\sin\theta + \cos\theta$ is D) $\frac{\pi}{2} - \frac{\theta}{2}$
2	d. a.	f(x) Exp degr Cho i) iii)	f(x - 1)(x - 2)(x) and $\log_{e} x$ in the ree terms. sose the correct ans $\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$ A) 0 The angle between A) $\frac{\pi}{4} - \theta$ The derivative of	$= \frac{-3}{B} \frac{1}{4} + \theta$ E arc length for the cur	d hence evaluate $\log_{e}(1)$ g: C) $\pi/2$ he tangent to the curve r = C) $\frac{\pi}{2} + \frac{\theta}{2}$ Eve x = f(y) is	(06 Marks (06 Marks (06 Marks (04 Marks (04 Marks D) π = $\sin\theta + \cos\theta$ is D) $\frac{\pi}{2} - \frac{\theta}{2}$
2	d. a.	f(x) Exp degr Cho i) iii)	f(x - 1)(x - 2)(x) and $\log_{e} x$ in the ree terms. sose the correct ans $\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$ A) 0 The angle between A) $\frac{\pi}{4} - \theta$ The derivative of A) $\sqrt{1 + y_{1}^{2}}$	$= \frac{-3}{B} \frac{1}{4} + \theta$ F arc length for the cur $B) \frac{\pi}{4} + y_1^2$	d hence evaluate $\log_{e}(1)$ g: C) $\pi/2$ he tangent to the curve r = C) $\frac{\pi}{2} + \frac{\theta}{2}$ two x = f(y) is C) $\sqrt{1 + x_{1}^{2}}$	(06 Marks (06 Marks (06 Marks (06 Marks (04 Marks D) π = $\sin\theta + \cos\theta$ is D) $\frac{\pi}{2} - \frac{\theta}{2}$ D) $\sqrt{1 - y_1^2}$
2	d. a.	f(x) Exp degr Cho i) iii) iii)	f(x - 1)(x - 2)(x) and $\log_{e} x$ in the ree terms. sose the correct ans $\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$ A) = 0 The angle between A) $\frac{\pi}{4} - \theta$ The derivative of A) $\sqrt{1 + y_{1}^{2}}$ The radius of cur	= -3), powers of x -1 and wers for the following =	d hence evaluate $\log_{e}(1)$ g: C) $\pi/2$ the tangent to the curve r = C) $\frac{\pi}{2} + \frac{\theta}{2}$ the tangent to the curve r = C) $\sqrt{1 + x_{1}^{2}}$ ap ² = r ³ is	(06 Marks .1) by taking upto 4 (06 Marks (04 Marks (04 Marks D) π $= \sin\theta + \cos\theta$ is D) $\frac{\pi}{2} - \frac{\theta}{2}$ D) $\sqrt{1 - y_1^2}$
2	d. a.	f(x) Exp degr Cho i) iii) iii) iv)	f(x - 1)(x - 2)(x) and $\log_{e} x$ in the ree terms. sose the correct ans $\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$ A) 0 The angle between A) $\frac{\pi}{4} - \theta$ The derivative of A) $\sqrt{1 + y_{1}^{2}}$ The radius of curr A) $\frac{3}{2}\sqrt{2ar}$	= -3), powers of x -1 and wers for the following =	d hence evaluate $\log_{e}(1)$ g: C) $\pi/2$ he tangent to the curve r = C) $\frac{\pi}{2} + \frac{\theta}{2}$ eve x = f(y) is C) $\sqrt{1 + x_{1}^{2}}$ ap ² = r ³ is C) $\frac{2}{3}\sqrt{ar}$	(06 Marks (06 Marks) (06 Marks) (04 Marks) (04 Marks) (04 Marks) (04 Marks) (05 Marks) (05 Marks) (05 Marks) (05 Marks) (05 Marks) (06 Marks) (07 Marks) (08 Marks) (09 Ma
2	d. a. b.	f(x) Exp degr Cho i) iii) iii) iv) Eval	f(x - 1)(x - 2)(x) and $\log_e x$ in the rece terms. sose the correct ans $\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$ $x \to \frac{\pi}{2}$ A) 0 The angle between A) $\frac{\pi}{4} - \theta$ The derivative of A) $\sqrt{1 + y_1^2}$ The radius of cur A) $\frac{3}{2}\sqrt{2ar}$ huate $\lim_{x \to 0} (\frac{1}{x^2} - \frac{1}{\sin^2 y})$	= 3), powers of x -1 and wers for the following = 3, B) 1 en radius vector and the B) $\frac{\pi}{4} + \theta$ f arc length for the curre B) $\sqrt{x_1^2 + y_1^2}$ evature of the curve 2a B) $\frac{3}{2}\sqrt{ar}$	d hence evaluate $\log_{e}(1)$ g: C) $\pi/2$ he tangent to the curve r = C) $\frac{\pi}{2} + \frac{\theta}{2}$ eve x = f(y) is C) $\sqrt{1 + x_{1}^{2}}$ ap ² = r ³ is C) $\frac{2}{3}\sqrt{ar}$	(06 Marks (06 Marks (06 Marks (04 Marks (04 Marks D) π $= \sin\theta + \cos\theta$ is D) $\frac{\pi}{2} - \frac{\theta}{2}$ D) $\sqrt{1 - y_1^2}$ D) $\frac{4aP}{3r}$ (04 Marks
2	d. a. b. c.	f(x) Exp degr Cho i) iii) iii) iv) Eval Find	f(x - 1)(x - 2)(x) and $\log_{e} x$ in the ree terms. so the correct ans $\lim_{x \to \frac{\pi}{2}} (\sec x - \tan x)$ $x \to \frac{\pi}{2}$ A) 0 The angle between A) $\frac{\pi}{4} - \theta$ The derivative of A) $\sqrt{1 + y_{1}^{2}}$ The radius of cur A) $\frac{3}{2}\sqrt{2ar}$ luate $\lim_{x \to 0} (\frac{1}{x^{2}} - \frac{1}{\sin^{2}y})$ I the angle of interse	= -3), powers of x -1 and wers for the following =	d hence evaluate $\log_{e}(1)$ g: C) $\pi/2$ he tangent to the curve $r = C$) $\frac{\pi}{2} + \frac{\theta}{2}$ eve $x = f(y)$ is C) $\sqrt{1 + x_{1}^{2}}$ here r^{3} is C) $\frac{2}{3}\sqrt{ar}$ here $r^{2}\sin 2\theta = 4$ and r^{2}	(06 Marks (06 Marks) (06 Marks) (04 Marks) (04 Marks) D) π $= \sin\theta + \cos\theta$ is D) $\frac{\pi}{2} - \frac{\theta}{2}$ D) $\sqrt{1 - y_1^2}$ D) $\frac{4aP}{3r}$ (04 Marks) $\cos ec 2\theta = 16$. (06 Marks)

Choose the correct answers for the following : 3 a. (04 Marks) If $u = x^2 + y^2 + z^2$ then $\frac{\partial u}{\partial x} + \frac{\partial^2 u}{\partial y^2} + \frac{\partial^3 u}{\partial t^3} =$ _____ i) A) 2(x + y)B) 2(x+1)C) 2(x + z)D) 2(y+z)For u = x(1-y), V = xy the value of Jacobian is, ii) D) $\frac{x}{y}$ B) x^2 C) xy A) x In the Taylor's expansion of $f(x,y) = xy^2 + \cos(xy)$ about $(1,\pi/2)$ the value of the iii) derivative $\frac{\partial^2 f}{\partial x \partial y}$ at the given point is_____, D) $\pi - 2$ A) $\pi + 1$ C) $\pi - 1$ B) $\pi + 2$ iv) For $f(x,y) = x^3y^2(1-x-y)$, one set of stationary values are, A) $\left(\frac{1}{2}, \frac{1}{2}\right)$ B) $\left(\frac{1}{3}, \frac{1}{3}\right)$ C) $\left(\frac{1}{3}, \frac{1}{4}\right)$ D) $\left(\frac{1}{2}, \frac{1}{3}\right)$ If u = f(y - z, z - x, x - y), find the value of $\frac{\partial u}{\partial x} + \frac{\partial u}{\partial y} + \frac{\partial u}{\partial z}$ (04 Marks) b. If u = x + y + z, uv = y + z, uvw = z then find the value of $\frac{\partial(x, y, z)}{\partial(u, v, w)}$. C. (06 Marks) A rectangular box open at the top is to have a volume of 32 cubic units, find the dimensions d. of the box requiring least material for its construction. (06 Marks) Choose the correct answers for the following : 4 a. (04 Marks) The representation $i\frac{\partial f}{\partial x} + j\frac{\partial f}{\partial y} + k\frac{\partial f}{\partial z}$ is for _____, i) $\nabla^2 \mathbf{f}$ B) $\nabla \times f$ C) D) ∇f A) $\nabla \cdot \mathbf{f}$ If div V = 0 when V is the volume then such a point of function is called_ ii) A) Rotational B) Irrotational C) Solenoidal D) Orthogonal iii) $curl(grad\phi)$ is denoted by, A) $\nabla \cdot (\nabla \phi)$ B) $\nabla \times (\nabla \cdot \phi)$ C) $\nabla \times (\nabla \phi)$ D) $\nabla \cdot (\nabla \cdot \phi)$ If e_1 , e_2 , e_3 are the base vectors then the positive numbers h_1 , h_2 , h_3 are called the, iv) C) area factors A) volume factors B) scale factors D) acceleration factors A vector field is given by, $\vec{F} = (x^2 - y^2 + x)i - (2xy + y)j$, show that the field is irrotational. b. (04 Marks) Prove that div(curl A) = 0. C. (06 Marks) Prove that cylindrical coordinate system is orthogonal. d. (06 Marks) PART - BChoose the correct answers for the following : 5 a. (04 Marks) If $I(\alpha) = \int_{\alpha}^{1} \frac{x^{\alpha} - 1}{\log x} dx$ then $\frac{dI(\alpha)}{d\alpha} =$ ______ i) A) $\frac{1}{1-\alpha}$ B) $\frac{1}{1+\alpha}$ C) $\frac{1}{1+\alpha^2}$ 2 of 4 D) $\frac{1}{1-\alpha^2}$

н н в

USN															10C	HE12/22
]												
	Fir	st/S	ecor	nd S	Sen	nes	ter	B.E.	•	Degree E	lxa	mination, J	une/	Ju	ly 20	15
							Eng	ine	e	ering Ch	em	istry				
Time	e: 3 h	rs.											İ	Ma	ıx. Ma	arks:100
Note	2. A 3. A	nswe nswei nswei	r an <u>y</u> r all r to c	y FI obje obje	VE ectiv ctiv	full ve ty e typ	l que pe qu pe qu	stion vestio estio	s, or n	, choosing o ns only on (as on sheets	at le OMI oth	ast two from e R sheet page 5 er than OMR	ach p of the will n	art. e ai ot l	nswer be vali	booklet. ued.
										PART	' - A		A			
1	a. Cl i)	hoose Ag A	the c galva) Ele	nic ctri	ect a cell cal e	nsw conv energ	ers fo verts gy int	or the	fo en	following : nical energy						(04 Marks)
	ii)	C Ne) Ele	ectric equa	cal e	nerg is b	gy int gy int based	o hea o hea	at	energy	D)	Chemical ene	ergy in	to ł	neat en	ergy.
		A C D) Th) In) N	ierm icrea one	ody ise in of th	nam n the he al	ic pri e free bove.	ncipl ener	le g	y of the syst	B) em	An equation for	or redo	ox p	ootenti	al
	iii) Po	tentia	al of	the	con	centra	ation	C	ell Cu/Cu_{c}^{2}	+	$M Cu_{C0.02M}^{2+} / Cu$	1 at 25	$5^{0}C$	is	
	iv	A) Ag) 0.0 - Ag	259 gCł	V elec	trod	B) e is	0.02	29	95V	C)	0.0591V	D)	0	.0519	V
	b. D c. A	A) C) efine s cell is	Prin Me single s con	mar tal – e ele stru	y ref - me ectro cted	tal i de p by	on ele on ele ootent coupl	ectro ectro ial. E ing z	de Ex	e e xplain the or nc electrode	B) D) igin dipp	Secondary refe Membrane electronic pro- of electrode pro- bed in 0.05M Z	erence ctrode otential nSO ₄ a	ele l. and	ctrode nicke	(04 Marks) l electrode
	ce -0	ll. Gi .25V	ven respe	that ectiv	star ely.	o ₄ . ndare	d red	uctio	n	potentials of	of zi	nc and nickel	electro	ode	s as -(0.76V and (05 Marks)
	d. W	'hat is	ion s	seled	ctive	e ele	ctrod	e? Ex	кр	plain the dete	ermi	nation of pH us	sing gl	ass	electro	ode. (07 Marks)
2	a. C	hoose	the c	corre	ect a	nsw	ers fo	or the	f	ollowing :						(04 Marks)
	i)	In	whic	ch b	atte	ry,	a ke	y coi	m	ponent is s	epar	rated from res	t of t	ne	batter	y prior to
		A) Pri	mar	r v ba	ttery	J				B)	Secondary bat	terv			
		C) Re	serv	e ba	ttery	/				D)	None of these	licity			
	ii)	Ele	ectro	lyte	used	1 in	the d	ry cel	11	is						
	;;;	A) Mr	$1O_2$	0.80	a of	B)	Gra	pl	hite	C)	$ZnC\ell_2 + NH_4$	C(D)	H	$_{2}O$	
	111	A) Inc	reas	es		B)	Deci	va re	attery, the co eases	C)	Becomes zero	nuric a	ICIC R	ı emain	s constant
	iv) Ox	idati	on o	of me	etha	nol in	met	ha	anol – oxyge	en fu	el cell involves	s the lo		of	5 constant
		A)	1 ē	5			B)	4ēs			C)	2ēs	D)	67	ēs	
	b. Ex	xplain Walt	the f	follc	win	g ba	ttery	chara	ac	eteristics:	110					
	1) c. D	escrib	age e the	con	11 Istru	ction	capao n and	worl	ki	ing of Nicke	le 11f l – N	e. Aetalhydride ba	attery.	Me	ention	(06 Marks) its uses. (05 Marks)

3

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

10CHE12/22

	d. What are fuel cells? Explain the construction and working of Hydrogen – Oxyger	n fuel cell. (05 Marks)
3	 a. Choose the correct answers for the following : i) In corrosion, the gas which is produced in acidic medium is A) Hydrogen B) Oxygen C) Nitrogen D) Carbor ii) Corrosion of steel boiler along the riverted portions is an example of A) Differential aeration corrosion B) Differential metal corrosion C) Stress corrosion D) Grain boundary corrosion iii) Iron containers to store the food stuffs are coated with A) Zn B) Al C) Ni D) Sn iv) In anodized aluminium, the corrosion protection is due to A) Passive oxide coating D) None of these b. Explain the following types of corrosion : ii) Differential correction corrosion : iii) Differential correction corrosion : 	(04 Marks) n dioxide
	c. Discuss the influence of following factors on the rate of corrosion.	(06 Marks)
	i) Nature of corrosion product ii) pH.	(04 Marks)
	d. What is Cathodic protection? Explain sacrificial anode method of corrosion contr	01. (06 Marks)
4	a. Choose the correct answers for the following	(04 Monks)
4	 a. Choose the correct answers for the following : i) Technological importance of metal finishing is to impart A) Corrosion resistance B) Solderability C) Thermal resistance D) All of the above ii) The function of complexing agent in the electrolyte bath is to A) Increase conductivity B) Increase metal ion concentration C) Decrease metal ion concentration D) None of these iii) The anode used in electroplating of chromium is A) Chromium B) Copper C) Pb - Sb D) Graph iv) The process used to manufacture a double sided printed circuit board is A) Electroless plating C) Immersion plating D) Phosphating b. What is metal finishing? Explain the process of electroplating of gold. c. Define the following terms : 	(04 Marks) tion ite (06 Marks)
	i) Decomposition potential ii) Polarisation iii) Throwing power.	(06 Marks)
	d. Distinguish between electroplating and electroless plating.	(04 Marks)
	PART - B	
5	 a. Choose the correct answers for the following : i) Bomb calorimeter is used for the determination of calorific value of A) Solid fuel B) Liquid fuel C) Both solid and liquid fuels D) Gaseous fuel ii) Which of the following possesses zero octane number? A) Iso octane B) α – methyl naphthalene C) n – heptanes D) Cyclohexane iii) Catalysts used in catalytic converter are A) Ni, Co and Cr B) Pt, Pd and Rh C) SiO₂ and Al₂O₃ D) Zeolite iv) Synthesis of biodiesel involves A) Redox reaction C) Esterification 	(04 Marks)

b. What is reforming of petroleum? Give any three reactions involved in reforming. (05 Marks)

6

7

8

c. Define Gross calorific value and net calorific value. Calculate GCV and NCV from the following data : Mass of fuel sample = 0.87×10^{-3} kg ; Mass of water in the copper calorimeter = 2.35 kg Water equivalent of calorimeter = 0.45kg ; Increase in temperature of water = 2.8° C Specific heat of water = $4.187 \text{ kJ/kg}^{\circ}\text{C}$; Latent heat of steam = 2457 kJ/kgPercentage of hydrogen in fuel sample = 3.8. (06 Marks) d. What is Photovoltaic cell? Explain the construction and working of PV cell. (05 Marks) a. Choose the correct answers for the following : (04 Marks) The equation of condensed phase rule is i) A) F = C - P + 2B) F = C - P + 3C) F = C - P + 1D) None of these An invariant one component water system has ii) A) Two phases B) Three phases D) No phase C) One phase iii) In potentiometer redox titrations, the calomel electrode is used in combination with A) Platinum electrode B) Glass electrode C) $Ag/AgC\ell$ electrode D) Quinhydrone electrode iv) Conductometric estimation is based on A) Beer – Lambert's law B) Nernst equation C) Henderson – Hesselbach equation D) Ohm's law b. State Gibb's phase rule. Draw and explain the phase diagram of water system. (07 Marks) c. State Beer's law and Lambert's law. (04 Marks) d. Discuss the application of potentiometry in the estimation of FAS using standard K₂Cr₂O₇ solution. (05 Marks) a. Choose the correct answers for the following : (04 Marks) i) Termination of polymerization in case of addition polymerization is by A) Combination of two growing chains B) Combination of growing chain with free radical of initiator C) Disproportionation D) All of these ii) The polymer widely used in making inner tubes of tyre is A) Neoprene rubber B) Butyl rubber C) Styrene – butadiene rubber D) Natural rubber iii) Matrix used during the synthesis of polymer composite is A) Thermosetting resin B) Formaldehyde C) Benzene D) None of these iv) Which of the following is conducting polymer? A) Aniline B) Acetylene C) Polypyrrole D) None b. What is glass transition temperature? Explain the factors influencing Tg value. (05 Marks) c. Explain the manufacture of plastics by injection moulding process. (05 Marks) d. What are conducting polymers? Discuss the mechanism of oxidative doping of polyacetylene. (06 Marks) a. Choose the correct answers for the following : (04 Marks) i) COD of waste water is expressed in A) PPM of $K_2 Cr_2 O_7$ B) mg of oxygen per litre C) mg of $CaCO_3$ D) PPM of CaCO₃ Excessive fluoride in water leads to ii) A) Dental carriers B) Silicosis C) Fluorosis D) All of these 3 of 4

10CHE12/22

- iii) The method used for secondary treatment of sewage is
 - A) Activated sludge process
- B) Ion exchange method

C) Reverse Osmosis

- D) Electro dialysis
- iv) Chloride content of water sample is determined by
 - A) Colorimetric method B) Argentometric method
 - C) SPADNS method

- D) Gravimetric method
- b. What is Hard water? Explain the estimation of total hardness of water by EDTA method.
 - (06 Marks)
- c. What is desalination? Explain desalination of water by reverse osmosis. (06 Marks)
- d. 25CC of waste water was mixed with 25CC of $K_2Cr_2O_7$, acidified and refluxed. The unreacted $K_2Cr_2O_7$ requried 8.5CC of 0.25N FAS. In a blank titration 25CC of $K_2Cr_2O_7$ acidified required 17.8CC of same FAS. Calculate COD of waste water. (04 Marks)

10PHY12/22

(04 Marks)

First/Second Semester B.E. Degree Examination, June/July 2015 Engineering Physics

Time: 3 hrs.

Max. Marks:100

Note: 1. Answer any FIVE full questions, choosing at least two from each part.

2. Answer all objective type questions only in OMR sheet page 5 of the answer booklet.

3. Answer to objective type questions on sheets other than OMR will not be valued.

4. Physical constants: Planck's constant $h = 6.63 \times 10^{-34}$ J-S;

Choose the correct answers for the following :

Electron mass $m_e = 9.11 \times 1^{-31}$ kg, velocity of light $c = 3 \times 10^8$ m/s, Newtron mass $m_n = 1.67 \times 10^{-27}$ kg, $\epsilon_0 = 8.85 \times 10^{-12}$ Fm⁻¹, Boltzmann constant $k = 1.38 \times 10^{-23}$ J/K.

PART - A

i) The law which describes black body radiation spectrum completely is A) Stefan's law B) Wien's law C) Planck's law D) Rayliegh Jeans law ii) Photoelectric effect established the A) wave nature of light B) particle nature of light C) particle nature of matter D) wave nature of matter iii) Compton wavelength is given by $\lambda =$ C) $m_0 c/h^2$ D) h^2/m_0c^2 A) h/m_0c B) $m_0 c/h$ iv) De-Broglie wavelength of an electron accelerated by 100 volt is B) 1.226 Å A) 1.226 nm C) 1.226 µm D) 1.226 mm. Describe Davisson – Germer experiment which proved the matter wave theory. b. (08 Marks) Define phase velocity and show that $v_g v_p = c^2$. c. (04 Marks) Find the kinetic energy of a neutron in eV, whose deBroglie wavelength is 1 A. d. (04 Marks) 2 Choose the correct answers for the following : a. (04 Marks) The energy of a particle in the lowest state, in one dimensional infinite potential well of i) width 'a' is B) $h^{2}/8ma^{2}$ C) $h/8ma^2$ A) hy D) $h^2/8a^2$ ii) Kinetic energy of an electron accelerated by a potential of 50 volts is D) 5 J A) 50 eV B) 50 J C) 5 eV iii) A wave function is an acceptable one if it is A) finite everywhere B) continuous everywhere C) single valued everywhere D) having all these properties iv) The probability of finding a free particle trapped in a potential well of width 'a' and infinite height, in the first excited state at the midpoint 'a/2' is A) 0.5 B) 1 D) 0.25. C) 0 b. State and explain Heisenberg's uncertainty principle. (04 Marks) c. Derive the eigen function and eigen value for a free particle in one dimensional, infinite potential well. (08 Marks) The speed of an electron is measured as 4×10^5 m/s with 0.01% uncertainty. Calculate the d. minimum uncertainty involved in the position measurement simultaneously. (04 Marks)

1 of 3

USN

1

a.

10PHY12/22

3	a.	Choose the correct answers for the i) Mobility of electrons in a meta	e following : al is given by		(04 Marks)
		A) V_d/E B) V_d	E E	C) E/V _d	D)eV _d E
		ii) When temperature increases th	ne resistivity of	a metal	
		A) decreases B) rer	nain the same	C) increases	D) reduces to zero
		iii) Fermi factor for $E = E_F$ at $T >$	0° k is		122
		A) 1 B) 0		C) 1/2	D) 2
		iv) As per classical free electron $\frac{1}{2}$	theory the expre	ession for electrical con	nductivity is $\sigma =$
	h	A) $m/ne^{-\tau}$ B) mn	$1e^{2}/\tau$	C) ne ² /m τ	D) ne ² τ/m
	0. C	Explain the failure of classical free State Matthiason's rule and explain	e electron theory	/. trical conductivity of a	(06 Marks)
	0.	impurity and temperature	i now does elec	incar conductivity of a	(06 Marks)
	d.	Calculate the probabilities of an el	ectron occupyin	g energy levels 0.02 e	V above Fermi level
		and 0.02 eV below Fermi level at 2	200 k.		(04 Marks)
				- Anna	
4	a.	Choose the correct answers for the	e following :		(04 Marks)
		i) If the distance between the pla	tes of a capacito	or is doubled, the value	e of capacitance is
		A) doubled	01.	B) increased to four the	imes
		C) halved	NV.	D) remains the same	r '
		11) The polarization that occurs in	the frequency r	ange 10 ⁻⁴ Hz to 10 ⁻⁴ F	IZ IS
		iii) The relation connecting electric	c displacement	D and electric field E	D) space charge
		A) $D = \epsilon + F$ B) $D = \epsilon$		C) $D = c - F$	D)D = c/F
		iv) Which of the following is a ple	ezoleectric mate	erial?	D)D C/L
		A) lead B) mid	ca	C) quartz	D) iron.
	b.	Give qualitative explanation for dia	a, Para and Ferr	o magnetisms.	(06 Marks)
	C.	Explain the four types of electric p	olarizations and	the effect of temperat	ure on them.
	1	When a NaCl and All all install	ta an alta tai C	11 C	(06 Marks)
	d.	when a NaCk crystal is subjected	to an electric fie	eld of strength 1000 V	m, the prolarization
		produced is $4.3 \times 10^{\circ}$ C/m ² . Calcu	late the dielectr	tic constant of NaCl.	(04 Marks)
			DADT		
5	0	Chapter the competence for the	$\frac{\mathbf{PARI} - \mathbf{B}}{\mathbf{following}}$		
5	a.	i) I ife time of an atom in a meta	stable state is of	f the order of	(04 Marks)
		A) nano seconds B) mil	liseconds	C) seconds	D) picoseconds
		ii) In a He-Ne gas laser, the ratio	of He atom to N	le atoms is of the order	r precoconas
		A) 1 : 1 B) 1 :	10	C) 10 : 1	D) 100 : 1
		iii) Pumping process in diode laser	r is by		,
		A) optical pumping B) for	ward bias	C) electric discharge	D) reverse bias
		iv) The method used in the measure	rement of atmos	spheric pollutants using	g laser is called
	1.3	A) LIDAR B) RA	.DAR	C) SONAR	D) Holography
	D.	Explain the terms: induced absorp	otion, spontanec	bus emission and stim	ulated emission and
		Finsteins coefficients	igy density of	radiation under equil	(00 Morte)
	Ċ	What are the requisites of a laser?			(09 Marks)
	d.	The average output power of a last	er source emitti	ing beam of wavelengt	th 633 nm is 5 mW
		Find the number of photons emitted	d per second by	the source.	(04 Marks)
			r		(**********)

10PHY12/22

6

6	a.	 Choose the correct answers for the following : (04 Marks) i) The acceptance angle of an optical fiber whose refractive indices of core and cladding are 1.55 and 1.50 respectively when kept in air is
		A) 45° B) 23° C) 32° D) 39°
		ii) The number of modes supported by an optical fiber with V number 20 is
		iii) Number of critical magnetic fields in a type II superconductor is
		iv) The superconductor behaves like a perfect
	1	A) Diamagnet B) paramagnet C) Ferromagnet D) Antiferromagnet
	b.	With neat diagrams describe three types of optical fibers based on propagation of light. (06 Marks)
	C.	Distinguish between Type I and Type II super conductors. (06 Marks)
	a.	Find out the ratio between the N.As of an optical fiber with refractive indices of core 1.41
		and of cladding 1.40, when kept in air and water. (04 Marks)
7	a.	Choose the correct answers for the following : (04 Marks)
		A) 0.74 B) 0.52 C) 0.48 D) 0.68
		ii) The co-ordination number for fcc structure is
		A) 12 B) 8 C) 6 D) 1
		iii) Miller indices for a plane parallel to $Y - Z$ plane is
		A) (011) B) (100) C) (010) D) (001)
		1v) Structure of NaCl is
	b	A) Simple cube B) bcc C) fcc D) none of these.
	0.	determined using it. (06 Marks)
	c.	Define packing factor. Calculate the packing factors for simple cubic and fcc structures.
	4	(06 Marks)
	u.	Copper has fice structure with atomic radius $0.12/8$ nm, Calculate the interplanar spacing for (321) plane
		(04 Marks)
8	a.	Choose the correct answers for the following : (04 Marks)
		i) The state of matter around the nanosize is known as
		A) solid state B) mesoscopic state C) liquid state D) plasma state ii) Number of carbon atoms in a Bucky ball is
		A) 70 B) 90 C) 12 D) 60
1	8	iii) Ultrasonics can be produced by
S.		A) photoelectric effect B) Compton effect
		C) reverse piezo electric effect D) thermonic emission
		A) < 20 KHz B) > 20 KHz C) < 20 Hz D) between 20 Hz to 20 KHz
	b.	What is non destructive testing? Explain with principle, the NDT method using
		or
		ulstrasonic to detect the flaws in a solid. Also mension two advantages of ultrasonic
		ulstrasonic to detect the flaws in a solid. Also mension two advantages of ultrasonic NDT. (08 Marks)
	c.	ulstrasonic to detect the flaws in a solid. Also mension two advantages of ultrasonic NDT. (08 Marks) What is carbon nanotube? Distinguish between SWCNTs and MWCNTs. (05 Marks)
	c. d.	ulstrasonic to detect the flaws in a solid. Also mension two advantages of ultrasonic NDT.(08 Marks)What is carbon nanotube? Distinguish between SWCNTs and MWCNTs.(05 Marks)Explain any three applications of carbon nanotubes.(03 Marks)

3 of 3

		Computer Concepts and C Programming	
Tir	ne: í	3 hrs. Max. Ma Note: Answer any FIVE full questions, selecting at least two from each part.	arks:100
		PART – A	
1	a.	 i) Which of the following task is performed by a computer A) processing B) input C) output D) all of ii) The	these er A and B
		 A small unit consisting of integrated circuits is sometimes called as A) processor B) chip C) circuit D) gadge What hardware was used by first generation computers? 	et
	b. c. d.	A) vaccum tubesB) valvesC) VLSID) ICs.Describe the features of a computer.What are printers? Explain the types of printers.Explain the different types of microprocessors.	(04 Marks) (06 Marks) (06 Marks) (04 Marks)
2	a.	 i) Categorize the CD – ROM is the following memory device A) semiconductor memory B) memory register C) magnetic memory D) none of these ii) Two basic types of operating systems are A) sequential and direct B) batch and interactive C) batch and time sharing D) sequential and real time. iii) Which of the following topology is not broadcast type A) star B) bus C) ring D) tree iv) Identify the odd term among the following group A) coavial cable B) ontical fibre C) twisted pair wire D) micro 	
	b. c.	What is operating systems? Explain the different types of operating systems. Explain the need of networking and benefits of networking.	(04 Marks) (08 Marks) (08 Marks)
3	a.	 i) Which of the following is considered as a token in C language A) keyword B) identifier C) operator D)all of t ii) The keyword among the following passes the program control out of block A) continue B) if C) break D) goto iii) In a C program, prior to using a variable, you must first it 	he above
		A) initializeB) declareC) defineD)both Aiv)What will be the output of the following int $a = b = c = 3$; printf("%d %d %d", a, b, c) A) 3 3 3B) garbage valueC)0 0 0D)error.	and B
	b. c. d.	Write a flowchart to input three numbers and print largest of three numbers. Write a structure of a C program. What is a variable? How it is declared and initialized? Give example. 1 of 3	(04 Marks) (06 Marks) (05 Marks) (05 Marks)

First/Second Semester B.E. Degree Examination, June/July 2015

10CCP13/23

USN

4	a.	i)	Which of the following	is a ternary operator,		e.					
			A) >=	B) <	C)?:	D) &&					
		ii)	Which is the floating po	oint constant		,					
			A) '400.0'	B) 0.0457	C) "0.0457"	D)457					
		iii)	What is the associativity	y of = = relational open	rator						
			A) left to right	B) right to left	C) no associativity	D)none of the above	•				
		iv)	Which statement is sim	nilar to $a?b = c:d?$							
			A)($a?b = c$): d	B) $(a?b) = (c:d)$	C) $a?(b = c:d)$ I	D) a? $(b = c) : d$.					
	1			1 1:00		(04 Mark	.s)				
	b.	Wh	at are operators? Explain	the different types of	operators.	(10 Mark	.s)				
	C.	Wri	ite a program to find the	roots of a quadratic eq	uation.	(06 Mark	.s)				
				<u>PART – B</u>							
5	a.	i)	Array elements cannot l	be passed to a function	using.						
			A) call by value	B) call by reference	C) both A and B	D) none of these					
		ii)	When a function does n	ot return any value its	return type is						
			A) void	B) null	C) zero	D) both A and B					
		iii)	Identify the error in the	program segment							
		fun	ction (int a, int b)								
			{								
			int a ;								
		a = 40;									
		return (b);									
) A) the function should be defined exist function (int a int b)									
		A) the function should be defined as int function (int a, int b) D) verifield is no declared									
			C both A and B	cu 🗸							
			D) neither of A and B								
		iv)	The getchar() and putc	har() functions belong	os to						
		1 v)	A) stdio h	B) conio h	C) string.h D) ctype.h (04 Mark	s)				
	b.	Wri	ite a program using func	tion to sort an array of	integers.	(08 Mark	s)				
	c.	Wh	at are the parameter pass	sing mechanism in C?	Explain in brief.	(08 Mark	s)				
				0	1						
6	9	i)	Which of the following	"C' statement braches	unconditionally from	n one point to anoth	er				
U	α.	1)	point in the program?	e statement braches	anconationally not	n one point to unour	01				
			A) if	B) goto	C) switch	D) if-else					
		ii)	When more than one if-	else statements are use	ed in a sequence. It is	known as					
)	A) if else ladder	B) nested if else	C) if else block	D) nested else					
		iii)	Which of the following	g executes one or more	e statements repeated	lly unitl a condition	is				
			met?								
			A) if	B) switch	C) for	D) continue					
		iv)	A loop with no test con-	dition is							
			A) while	B) do while	C) for	D) none of these					
	1.				1 1 1 1 1 1 1	(04 Mark	(8)				
	D.	Wri	ite a program using do -	while loop to disp	lay numbers 1 to 10,	without using array	S.				
	C	Dif	ferentiste hetween while	and do while loop		(US Mark (OS Mark	s)				
	0.	DIL		2 of 3		(UO IVIAIK	3)				
				2015							

10CCP13/23

7	a.	i) 1	How many dimensions an array can have?							
		1	A) one dimension	B) two dimension						
			C) three dimension	D) any no. of dimens	ions.					
		ii)	How many elements can be added or remov	ed from an array at a t	time					
		1	A) 2 B) 1	C) 4	D) 6					
		iii) V	What is the output of the following code,							
		i	int $x[2] [2] = \{3, 2, 5, 4\};$							
		I	printf("%d", x[1][1]);							
		1	A) 3 B) 4	C) 5	D) 2					
		iv) I	Elements of an array are stored in							
		1	A) Random memory locations B) sequential memory locations							
		(C) scattered memory locations	D) direct memory loc	cations. (04 Marks)					
	b.	Write	a program to print the product of two dimen	sional arrays. (10Marks)						
	с.	What i	What is an array? Explain the types of an array with examples. (06Ma							
				97						
8	a.	i) Op	pen MP stands for							
		A)) open multiprocessing	B) open main paralle	lism					
		С) open multitasking parallelism	D) open multiprocessor						
		ii) T	he function provides the number of	f processors, which i	s used to process a					
		pro	ogram.		- 					
		А	.) omp-get-num-procs()	B) omp-get-num-thre	eads()					
		C)	omp-get-thread-num()	D) omp-set-num-thre	ads()					
		iii) Op	pen MP is an API, which is based on							
		А) join model B) Fork – Join model C)) Joint – fork model	D)structural model					
		iv) Th	ne main components of open MP are directive	ves, environmental var	iables and					
		1	A) Runtime variables	B) library functions						
		1	B) C)instances variables	D) none.	(04 Marks)					
	b.	What	is synchronization in open MP? Explain the	different synchroniza	tion constructs.					
		XX7 *.			(08 Marks)					
	C.	write a	a program to find the factorial of a number u	using open MP.	(08 Marks)					

USN													1	10CIV13/23
a 												_		
		irst	Seco	nd S	sem	este	r B.I	E.	Degree Ex	ami	natio	n, Jun	e/July	2015
	en	ien	15 01		VII	En	gine	ee	ering and	1 Er	ngine	erin	g Me	chanics
Tim	ie: 3	hrs.											Ν	lax. Marks:100
Not	e: 1. 2.	Answa Answa	er any F er all ob	FIVE jectiv	full q e tvn	uestic e aues	ons, ch	ioos onli	sing at least two v on OMR shee	o from et nage	each p	art. e answer	hooklet	
	3.	Answe	er to obj	ective	e type	quest	tions o	n s	heets other that	n OM	R will n	ot be val	ued.	
1		CI					0		PART – A					20
1	a.	Cho	ose the	corre	ect ar	iswer	s for t	he	following :					(04 Marks)
		1)	A) Sp	te se	nsing	5 15 a 1 th o m	type o	İ			· · · · · · · · ·			
			(A) Sin (C) Co	nstr	ig wi	toch	nology			B) 2	Surveyir	1g	50	
		ii)	Fenci	no is	prov	ided t	nolog.	У		D) 1	ranspo	mation s	ystem	
)	A) Vi	llage	road	s	.0			B) S	State his	hways		
			C) Na	tiona	l hig	hway	S			D) H	Express	highwa	VS	
ć		iii)	A Bas	scule	bridg	ge is a	ı				ang ang	S-B	<i>.</i>	
			A) Flo	oating	g brid	lge				B) /	Arch bri	dge		
			C) Su	spens	sion	bridge	e			D) 1	Movable	e bridge		
		1V)	Shoul	ders	are tl	ne con	npone	ents	sof	AL THE				
	h	Evel	A) Ro	bads	: £		B) B	3rid	lges	\mathcal{C}) [Dams	1 0	D) B	uilding.
	υ.	Expi		v the	mira	Istruc	lure de	eve	slopment will	nelp t	he grow	vth of ec	conomy o	(06 Marks)
	C.	Expl	ain brie	efly t	he sc	ope o	fcivil	en	gineering in g	eotec	hnical e	ngineer	ing.	(04 Marks)
	d.	Expl	ain: i)	Kerb	s in 1	oads	ii)	Ga	Illeries in dam	s.				(06 Marks)
2	a.	Cho	ose the	corre	ect ar	nswer	s for t	he	following :					(04 Marks)
		1)	A par	ticle	has	D)		<u>.</u> .			1.0.1			
		;;)	A) Or To do	ily M fina	lass	В)	Only	SIZ	the C Both	Mass	and Siz	(e D)	Neither I	Mass nor Size
1		11)	$A) M_{2}$	aonit	ude a	ind di	rection	n	the following	Chara B) E	Point of	cs shoul	a be spe	cified:
			C) Li	ne of	actic	on		11	•	D)	All of th	applicat	.1011	
		iii)	The fo	orces	whic	ch pas	s thro	ugl	h a single poir	it and	lie in th	ne same	plane ar	e
			A) Co	olline	ar fo	rces		Ŭ	0 1	B) (Coplana	r non-co	ncurrent	t forces
			C) Co	plana	ar co	ncurre	ent for	rces	S	D) N	None of	these		
		iv)	Whicl	hoft	he fo	llowi	ng is t	the	basic concept	ofm	echanic	s?		
)	1	G ()	A) Ch	ange		0.0	B) P	ow	ver	C) F	Force		D) E1	nergy.
	b.	State	three p	orinci	ples	of for	ces.		· · · · · · · · · · · · · · · · · · ·					(06 Marks)
`	d.	Fort	he brak	upie.	lylen		in Fig		2(d) determine	na tha	cmalla	st force	D which	(04 Marks)
	u.	clock	wise n	io per	nt ab	out B	m r ig	.Q.	.2(u), determined	ne the	smane	st lorce	P which	(06 Marks)
3	9	Cho	ose the	corr	ne uo	Sul D	a for t	ha	fallowing					(00 Marks)
3	а.	i)	The re	esulta	int fo	iswei	f two	cor	ionowing .	s hecc	me ma	vimum	and mini	(04 Marks)
		-)	betwe	en th	em is	S	1100	001		5 0000		Annunn		mum, n'angle
			A) 0°	and	180°		B) 0	° a	nd 90°	C) 9	0° and	0°	D) N	one
		ii)	Two	force	s eac	h equ	al to	P/2	2 act at right a	angles	. Their	effect	may be	neutralized by
			the th	ird fo	orce,	acting	g along	g th	neir bisector ir	n the c	opposite	directio	on, with a	a magnitude of
			A) P				B) \	$\sqrt{2}$	Р	C) –	-P/2		D) P	$\sqrt{2}$
		iii)	Comp	onen	tofa	a force	e at rig	ght	angles to its l	ine of	action	is		
		• •	A) Ze	ro			B) P	osi	tive	C) N	Negative	e	D) N	one of these
		1V)	Metho	od of	tindi	ng re	sultan	t fo	orce of a numb	per of	given f	orces is	called	~ .
			A) Co	ompo	sitior	1	B) R	lesc	olution	C) [Jecomp	osition	D) No	one of these.
									1 of 4					

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8=50, will be treated as malpractice.

10CIV13/23

- c. A bracket is subjected to a system of forces as shown in Fig.Q.3(c). Determine the magnitude, direction and line of action of the resultant from 'A'. (08 Marks) Choose the correct answers for the following : a. (04 Marks) Centroid of plane is the point at which i) A) Volume of body concentrated B) Surface area is assumed to be concentrated C) Weight of the body concentrated D) All of these ii) An axis over which one half of the plane figure is just mirror image of the other half is A) Axis of symmetry B) Unsymmetrical axis C) Bottom most axis D) None of these The centroid of a circle is iii) A) At centre B) Along circumference C) along tangent D) outside circle iv) The centroid of a lamina is determined by the principles of A) Lamis theorem B) Varignon's theorem C) Triangle law of forces D) None of these
- b. Determine the centroid of a semicircle from first principles. (06 Marks)
- c. Locate the centroid of the shaded area shown in Fig.Q.4(c) with respect to point 'A'.

(10 Marks)

PART – B

5 a. Choose the correct answers for the following :

b. State and prove Varignon's theorem of moments.

- i) The force which is equal in magnitude and opposite in direction to resultant is
 - A) Couple

ii)

4

B) MomentD) None of these

- C) Equilibrant
- For a smooth spherical surface reaction acts
- A) Horizontal to the plane of contact
- B) Inclined to the plane of contact
- C) Perpendicular to the plane of contact
- D) None of these
- iii) A free body diagram is a diagram
 - A) Of a body suspended freely in air
 - B) Drawn by free hand
 - C) Drawn by detaching the body from its attachments with surrounding and replacing the attachments with force vector.
 - D) Of a body in vaccum
- iv) The procedure of resolution is
 - A) To find the equilibrant
 - B) To find the resultant of the system
 - C) To find two components of an inclined force
 - D) None of these
- b. Explain different types of beams with sketches.
- c. A 500N cylinder of 1m diameter is loaded between the cross pieces which make an angle of 60° with each other and are pinned at 'C' as in Fig.Q.5(c). Determine the tension in the horizontal rope DE assuming smooth floor. (08 Marks)

(04 Marks)

(08 Marks)

(08 Marks)

11/12/2

$$\begin{array}{c} 10 \text{CV} 19/23 \\ \textbf{(04 Marks)} \\ \textbf{i} \quad \text{When load acts at constant rate over given length of beam it is called A) udl B) uvl C) point load D) none of these B) For a perfect frame, a guide line for identifying is A) m $\pm 2j - 3$ B) m $= 2j - 3$ C) m $= 2j + 3$ D) m $= 3 - j$ iii) A beam is said to be determinate, if A) the reactions can be determined using the equations of equilibrium B) the reactions can be determined using the equations of equilibrium conditions only D) the reactions can be determined using the equations of equilibrium. Iv) The minimum number of members to form a perfect truss is A) 2 B) 3 C) 4 D) 1 \\ \textbf{b} Determine the tension in cable AB and AC required to hold a 50kg crate shown in Fig.Q.6(b). (60 Marks) (20 $

10CIV13/23

Fig.Q.2(d)

2014 mm

Fig.Q.4(c)

mon

70mm

1

40 1A

Fig.Q.8(c)

Fig.Q.7(c)

* * *

USN]			10EME14/24
			~									
		'irst/	Seco	nd	Sen	nest	er E	B.E.	Degree E	xamination, Jur	ie/	July 2015
			E	le	me	nts	5 01	M	echanic	al Engineeri	ng	<u>~</u>
Tin	ne: .	3 hrs.										Max. Marks:100
					N	ote:	1. A se 2. U	nsw lecti se oj	er any FIVE ing at least tv f steam table	full questions, vo from each part. is permitted.		
									<u>PART – A</u>		A	
1	a.	Choo	se the	corr	ect a	nswe	ers fo	r the	following :			(04 Marks)
		1)	Wind A) car	enei oital	ener	s an e	examj B	ple to	or	() transitional ener	rav	D) stored energy
		ii)	Renev	vabl	e ene	ergy	sourc	es ar	e	c) transitional cites	gy	D) stored energy
			A) haz	zard	ous t	o en	viron	ment		B) exhaustible		
		•••	C) no	n –	exha	ustib	le			D) not freely availa	able	•
		111)	The a	mou	int c	of he	at re	quire	ed to increas	e the temperature o	f d	ry steam above its
			A) se	nsih	le he	perat	ure is	call	ed as	B) ontholny of sup	arh	aat
			C) ent	halp	ov of	supe	rheat	ed st	eam	D) latent heat	erne	zai
		iv)		is	used	to e	xting	uish	the fire in the	furnace of the boiler	w	nen water level falls
			too m	uch	belov	w the	norm	nal le	evel.			
			A) blc	W-0	off co	ock				B) steam stop valv	e	
	h	A star	C) wa	ter I	evel	indic	ator	frage		D) fusible plug.		XX71 (
	0.	the fi	nal ete		ar an	a ary		fract	d the density	Ives 140 kJ/kg at the	san	te pressure. What is
		super	heated	stea	m=´	2 1 k	$\frac{1}{k\sigma}$	6 m K	id the density	y of steam in its fin	al	state. Take, C_p for
	c.	With	a neat	sket	ch. e	xpla	in the	wor	king of a wate	er tube boiler.		(08 Marks)
					20	- F						(00 11/1/1/1/3)
2	a.	Choo	se the	corr	ect a	nswe	ers fo	r the	following :			(04 Marks)
		1)	A) im	al tu	rbine	e is_	rhing	_		D) and truthing		
			C) im	puls	e ste	am fi	irbine	2		D gas turbine	VA	
		ii)	Gas tu	rbin	les m	nainly	v used	d in		D) none of the abo	ve	
			A) avi	atio	n	•	,			B) electric power g	gene	eration
			C) A	onl	у					D) both A and B		
		iii)	Runne	er of	`a wa	ater t	urbin	e coi	nverts			
			A) pre	essui	re en	ergy	into 1	nech	anical energy	r		
			(C) pr		re ene	rgy 1	nto m	lecha	tio energy			
			D no	one c	of the	abo	ve	KIIIe	tic energy			
		iv)	Draft	tube	is a	part	of					
			A) Pel	lton	whee	el	B) Kap	olan turbine	C) Delaval turbine	Ľ) Parsons turbine
	b.	Menti	ion the	fun	ction	of f	ollow	ing :	i) braking je	et ii) scroll casing i	ii) j	penstock
		iv) co	nverge	ent—c	diver	gent	nozz	le.				(04 Marks)
	C.	What	do you	1 me	an b	V COI	npou	nd o	f steam turbin	e? Why it is necessar	v?	With a neat sketch

Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. 2. Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice.

1 of 3

10EME14/24

3	a.	Choose the correct answers for the following : (04 Mark	s)
		 A) diesel engine B) petrol engine C) gas engine D)both B and C The thermal efficiency of petrol engine as compared to diesel engine is A) lower B) higher 	
		C) same for same power output D) same for same speed	
		 iii) In diesel cycle engine, heat is supplied at A) constant temperature B) constant volume C) constant pressure D) none of the above 	
		A)only air is sucked in C) mixture of fuel and air is sucked in D) none of the above	
	b.	Explain with suitable sketches, P-V diagrams, the working of four stoke Otto engine. (10 Mark	s)
	c.	The following particulars were obtained in a trial on 4-storke engine. Duration of trial = 1 hour, revolutions = 14000, Net brake load = 1470 N, mean effective pressure = 7.5 bar, Fuel consumption = 20000 lit, calorific value of fuel = 21 KJ/ l it, cylinded diameter = 250mm, stroke = 400 mm effective brake circumference = 4 m. Calculate : i) indicated power ii) brake power iii) mechanical efficiency iv) indicated thermal efficiency. (06 Mark	re er ed s)
4	a.	Choose the correct answers for the following : (04 Mark	s)
		 i) One TOR is equal to A) 310 kJ/min B) 210 kJ/min C) 110 kJ/min D) 410 kJ/min D) 410 kJ/min ii)	
		A) humidityB) temperatureC) motion and purity of airD) all the aboveiv) Throttle valve in a refrigeration systemB) expands the refrigerant	
	1	C)both A and B D) none of the above	
	b.	Define: 1) COP (03 Mark) Distinguish between refrigeration and air conditioning (05 Mark)	5) 5)
	d.	With a schematic diagram, explain the working of vapour refrigeration system. (08 Mark	s) 5)
		DADT D	
5	a.	Choose the correct answers for the following : (04 Mark)	s)
		i) The lathe part which slides along bed ways is called as	-)
		 A) cross slide B) tool post C) compound rest D) saddle ii) The lathe operation performed to generate flat surfaces at the end of end of work piece is called as 	e
		A) turningB) facingC) knurlingD) thread cuttingiii)The operation of enlarging one end of a previously drilled hole through a small dept	h
		A) boring B) counter sinking C) counter boring D) reaming iv) Following is the one of the drilling operations	
		A)thread cutting B) facing C) taper turning D) spot facing.	
	b.	Mention the function of following parts of lathe : (06 Marks	5)
	C.	1) apron 11) compound rest 111) cross – slide 1V) lead screw V) feed screw Vi) tail stock. With a neat sketch, explain the working of radial drilling machine. (10 Mark) 2 of 3	5)

10EME14/24

		10EME14/24
6	a.	 Choose the correct answers for the following : (04 Marks) i) The thickness of the chip is minimum at the beginning of cut and reaches maximum when the cut ends in
		 A) down milling B) up milling C) both A and B D) none of the above ii) The horizontal shaft provided between tapered hole spindle and bearing in the projecting overarm of milling machine is called as
		iii) The following is the one of the natural abrasives A) silicon carbide B) cubic boron nitrideC) aluminum oxide D) corundum
	h	iv) For precision grinding, the wheels with bonding process is used A) Resinoid bond B) vetrified bond C) silicate bond D) shellac bond
	с.	Name and explain with a sketch the milling operation required to produce the following : i) $V -$ groove ii) $T -$ slots iii) flat surface iv) convex surface. (08 Marks) With a neat sketch, explain the working of centreless grinding machine. (08 Marks)
7	a.	Choose the correct answers for the following : (04 Marks)
		i) Oxy-acetelene ratio for carburizing frame is A) 1 : 1 B) 1 : 1.2 C) $0.5 : 1$ D) $0.95 : 1$ ii) Filler metal used in brazing is
		 A) Silver B) lead iii) The minimum temperature at which the given oil gives off sufficient vapour to ignite is called as
		A) cloud pointB) fire pointC) pour pointD) flash pointiv)Example for antifriction bearing isA)Bushed bearingB) journal bearingD) relier bearing
	b. c.	A) Busined bearingB) Journal bearingC) roller bearingD) plummer blockWith a neat sketch, explain the principle of arc welding.(06 Marks)What are the functions of lubricant?(04 Marks)
0	d.	With a neat sketch, explain pivot bearing. (06 Marks)
8	a.	i) is used to transmit power from one shaft to another when the centre distance is large
		 A) gear drive B)belt drive C) gear train D) none of the above ii) Bevel gears are used to transmit power when shafts are
		 A) Parallel B) non - parallel D) perpendicular and non-intersecting iii) The ratio of pitch diameter to the number of teeth is called as
		A)circular pitch B) diametral pitch C) velocity ratio D) module iv) is used for transmitting power when the VR is high and centre distance
		A) Compound gear trainB) simple gear trainC) reverted gear trainD) epicyclic gear train.
	b. c. d.	Briefly explain the effect of creep and slip on the performance of belt drive. (06 Marks) What is ldler pulley? What is its purpose? Explain. (04 Marks) A simple gear train is made up of four gears A, B, C, D having 20, 40, 60, 70 teeth. If gear A is the main driver rotating at 500 rpm clockwise, calculate : i) speed of intermediate gears
		ii) speed and direction of last followeriii) train value.
		(00 Marks)

* * * * * 3 of 3

Any revealing of identification, appeal to evaluator and /or equations written eg, 42+8 = 50, will be treated as malpractice. Important Note : 1. On completing your answers, compulsorily draw diagonal cross lines on the remaining blank pages. ci

3	a.	Choose the correct answers for the following : (04 Marks) i) In stat connected balanced resistor load, the voltage rating of each resistor should be –
		A) equal to line voltage B) $\sqrt{2}$ × line voltage C) $\frac{\text{Linevoltage}}{\sqrt{2}}$ D) none of the above
		ii) In balanced 3 – phase system, power consumed is given by
		A) $\sqrt{3}$ V ₁ L ₁ cos α B) 3 V ₂ L ₂ cos α C) 3L ₂ ² R ₂ D)options A B &C
		iii) Three identical resistances connected in star consume 4000 W if the resistances are
		connected in delta across the same supply, the power consumed will be
		A) 4000 W B) 6000 W C) 8000 W D) 12000 W
		iv) In two wattmeter method of power measurement in 3 - phase balanced load, both the
		wattcmeters give equal reading when the load pf is
	1.	A)0.5 B) zero C) between 0.5 and one D) one.
	b.	of voltages in three phase star connected load
	C	A delta – connected load draws a current of 15 A at a lagging power factor of 0.85 from a
	0.	400V, 3-phase, 50 Hz supply. Find the resistance and inductance of each phase. (05 Marks)
	d.	A 3 – phase motor load has a pf. Of 0.397 logging. Two wattmeters connected to measure
		power show the input as 30 KW. Find the reading on each wattmeter. (05 Marks)
4	a.	Choose the correct answers for the following : (04 Marks)
		A dynamometer wattmeter can be used for
		A) both DC and AC B) DC only C) AC only D)neither A, B or C
		1) In a portable instrument, the controlling torque is provided by D)all of the above
		i) A fise is a
		A) protective device B) current limiting device
		C) voltage limiting device D) power limiting device
		iii) The eartes wire should be
		A) good conductor of electricity B) mechanically strong
	h	C) both A & B D) bad conductor of electricity.
	D.	Name various types of wiring system commonly used and explain any one of them in detail.
	c.	Explain pipe earthling with a neat diagram. (05 Marks)
	C.	With a neat diagram, explain the construction of and working principle of dynamometer type
		(06 Marks)
		PART – B
5	a.	Choose the correct answers for the following : (04 Marks)
		i) In the armature, DC generator generates
		A) AC voltage B) DC voltage C) AC superimposed over DC D) none of the above ii) The number of normalial notes in the armatume winding of four note wave connected De
		machine having 28 coil side is
		A) 28 B) 14 C) 4 D) 2
		iii) The back emf of DC motor is given as
		A) $V + I_a R_a$ B) $V - I_a R_a$ C) V D) none of the above
		iv) The armature of DC machine is made up of laminated sheet in order to –
		A) reduce armature copper loss B) reduce eddy current loss
		C) reduce hysteresis loss D) increase the dissipation of heat from the amosture muffers
	h	Explain the construction features of a DC machine
	с.	Derive torque equation of a DC motor. (05 Marks)

- c. Derive torque equation of a DC motor.
- d. An 8 pole lap-connected armature has 40 slots with 12 conductors per slot generates a voltage of 500 V. Determine the speed at which it is running if the flux per pole is 50 mwb.

- 10ELE15/25

CL

4

10ELE15/25 6 Choose the correct answers for the following : a. (04 Marks) The main purpose of using magnetic core in a transformer is to i) A) prevent eddy current B) eliminate magnetic hysteresis C) decrease iron losses D) decrease the reluctance of the common magnetic flux path. ii) A transformer steps up the voltage by a factor of 100. The ratio of current in the primary to that in the secondary is A) 1 C) 0.01 B) 100 D) 0.1 iii) Losses which do not occur in transformers are A) copper losses B) magnetic losses C) friction losses D) none of these iv) If full load cu loss of transformer is 1600 W, its cu loss at half load will be A) 400 W B) 800 W C) 1600 W D) 200 W b. What are the various losses that occur in transformer? Give the equations for these losses. (05 Marks) 1000 KVA transformer has primary and secondary turns of 400 and 100 respectively and C. induced voltage in secondary is 1000 V. i) Find primary volts (ii) The primary and secondary full load currents iii) Secondary current when 100 KW load at 0.8 pf is connected at the output. (06 Marks) d. A transformer is rated at 100KVA. At full load its copper loss is 1200W and its iron loss is 960W. Calculate: i) Efficiency at full load, unite pf ii) Efficiency at half load, 0.8 pf. (05 Marks) 7 Choose the correct answers for the following : a. (04 Marks) The frequency of voltage generated by an alternator having 4 – poles and rotating at i) 1800 rpm is hertz. A) 60 C) 120 B) 7200 D) 450 ii) The main disadvantage of using short-pitch winding in alternator is that it -A) reduces harmonics B) produces asymmetry in the three phase winding C) increases cu of end connection D) none of the above iii) Salient pole generators are characterized by their A) small diameter B) large axial length D) none of the above C) large diameter and short axial length iv) In alternator A) armature rotates B) field stationary C) armature stationary and field rotates D) none of the above Explain the construction features of three phase synchronous generator. b. (08 Marks) c. A 3 – phase, 16 – pole alternator has a star connected winding with 144 slots and 10 conductors per slot. The flux per pole is 0.03 Wb and speed is 375 rpm. Find the frequency, phase and line emf. Assume full pitched coil and $k_d = 0.96$. (08 Marks) 8 Choose the correct answers for the following : a. (04 Marks) i) Two types of 3-phase induction motors are A) split phases repulsion B) shaded – pole and universal C) squirrel cage and slip ring D) none of the above ii) Rotating magnetic field in induction motor rotates at B) less than synchronous speed A) synchronous speed C) more than synchronous speed D) none of the above iii) Slip of the induction motor is equal to A) $S = N_s - N$ B) S = $(N_s - N)/N_s$ C) $S = N - N_s$ D) S = $(N - N_s)/N$ iv) Starter restrict -A) high starting current B) speed C) current and voltage D) none of the above. b. Explain the concept rotating magnetic field in three phase induction motor. (06 Marks) c. Derive the equation for rotor frequency in terms stator frequency. (04 Marks)

d. A 3-phase induction motor is wound for 4-poles and is supplied from 50 Hz system. calculate : i) The synchronous speed ii) The rotor speed when slip is 4% iii) Rotor frequency when rotor runs at 600 rpm. (06 Marks)

		10ELN1/25
3	a.	Choose the correct answers for the following : (04 Marks)
		i) The operating point is on the
		A) output characteristic curve B) on the DC load line
		C) transfer characteristic curve D) input characteristic curve
		i) The maximum peak to peak output voltage swing is obtained when the Q point of circuit is located
		A) near saturation point B) near cutoff point
		C) at the centre of the DC load line D) at least on the load line
		11) The more stable operating point for transistor is obtained from the biasing circuit
		A) fixed bias circuit B) voltage divider bias circuit
		iv) In a transistor temperature sensitive parameter are
		A) V _{CC} and I _P B) V _{FE} and I _E C) V _{CC} and I _C D) V _{PE} and I _{CPO}
	b.	Write the circuit diagram for :i) voltage divider bias circuit ii) fixed bias circuit. (10 Marks)
	c.	For the circuit shown in Fig. Q3(C). Find the range of operating point when $h_{FE(min)} = 50$,
		$h_{FE(max)} = 200$. Assume Si transistor. (06 Marks)
		DICK (18V
		W \$ 2.2K
		Fig. O3(c)
4	а	Choose the correct answers for the following : (04 Marks)
	ч.	i) In an SCR, the function of the gate is to
		A) to control the SCR current B) turn on the SCR
		C) turn OFF the SCR D) reduce the reverse break down voltage
		ii) The unijunction transistor has
		A) anode, cathode and gate B) two base and one emitter
		C) two anode and one gate D) anode cathode and two gates
		A) amplifier B) relavation oscillator C) rectifier D) inverter
		iv) A FET consists of
		A) source B) drain C) gate D) all of the above.
	b.	Sketch a 90° phase control circuit for an SCR and draw the load waveform. Explain the
		operation of the circuit. (08 Marks)
	c.	Draw and explain the typical drain characteristic of an N-channel JFET with $V_{gs} = 0$. (08 Marks)
		PART – B
5	a.	Choose the correct answers for the following : (04 Marks)
		i) In an amplifier frequency response curve, the gain of the amplifier at half power point is
		A) 0.707 of maximum value of gain B) 1.41 of maximum value of gain
		C) 1.11 of maximum value of gain D) 3.14 of maximum value of gain
		ii) Band width of an amplifier is the range of frequency over which the gain is
		A) gain is maximum B) gain is one C) gain is zero D) gain constant
		A) R C B) R L C) R C L D) L C
		iv) For sustaining oscillations in an oscillator circuit
		A) feedback factor should be unity B) phase shift should be 0°
		C) feedback should be negative D) both A and B.
	b.	With a circuit diagram, explain the significance of each component of RC coupled amplifier.
		(06 Marks)
	с.	With a circuit diagram, explain the operation of a Hartley oscillator. (06 Marks)
	u.	In a collection oscillator, $C_1 = 100$ pF and $C_2 = 60$ pF. Find the value of L, if the frequency of
		OSCILIATION IS 40 KHZ. (04 Marks)
		2015

a	×			10ELN1/25
	6	a.	Choose the correct answers for the following :	(04 Marks)
			i) Voltage gain of an voltage follower is	D) 105
-			A) 0 B) ∞ C) 1 ii) The meaning of infinite hand width of an on-Amp is	D) 10°
			A) it allows the signal with 50 Hz frequency	
			B) it allows all the frequency from 0 to ∞ Hz	
			C) it allows the signal with 0Hz frequency	
			D) it allows the signal with frequency ∞ Hz.	
			11) The ideal characteristic of an op-Amp are	
			A) $R_i = \infty$, $R_0 = 0$, $A_v = \infty$, CMRR = ∞	
			B) $R_i = 0$, $R_0 = \infty$, $A_V = 0$, CMRR = 0 C) $R_i = 0$, $R_i = 0$, $A_i = 1$, CMRR = 0	
			C) $R_1 = 0$, $R_0 = 0$, $A_V = 1$, CMRR = ∞	
			iv) In a non-inverting amplifier circuit, $R_F = 360$ K, $R_I = 120$ K. The ga	in of the amplifier is
			A) 100 B) 1000 C) 4	D) 2.
		b.	Explain how an op-Amp can be used as a inverting summer.	(08 Marks)
		c.	A 10 mV, 5 KHz sinusoidal signal is applied to input of an op-Amp	integrator circuit for
			which $R = 100 \text{ K}$, $C = 1 \mu\text{F}$. Find the output voltage.	(08 Marks)
	7	a.	Choose the correct answers for the following :	(04 Marks)
			i) A 400W carrier is modulated to a depth of 70%. The total power in a	a modulated wave is
			A) 600 W B) 500 W C) 498 W	D) 0.5 W
			11) The BCD equivalent decimal 14 is $(A) = 00101010$ (C) 10010101	D) 01000001
2			iii) The 15's complement of $(ABC)_{16}$ is	D) 01000001
		ω.	A) CAB B) CDA C) 543	D) ACB
			iv) The binary number of $(0.56)_{10}$ is	
		h	A) 0.01010 B) 0.10101 C) 1.011	D) 0.10001
		о. С	Perform the following :	(06 Marks)
		0.	i) $(ABC)_{16} + (ABCDE)_{16} = (?)_{16}$	
			ii) Using 1's complement $(11010)_2 - (10000)_2 = (?)_2$.	(06 Marks)
		d.	Perform the following :	
			1) $(6751.53)_8 = (?)_{10}$ ii) $(A51.2A) = (?)_{10}$	
			(A31.3A) ₁₆ – (?) ₂ .	(04 Marks)
	8	a.	Choose the correct answers for the following :	(04 Marks)
			i) The Boolean expression $x + yz$ is equal to	(
			(A) $x + y + z$ (B) $(x + y) (x + z)$ (C) $(x + y)z$	D) $(x + z)y$
			ii) The Boolean expression $A + AB$ is equal to	
			$\begin{array}{c} A) B \\ \vdots \\ \vdots \\ B \\ \vdots \\ B \\ \vdots \\ B \\ E \\ C \\ C \\ C \\ C \\ C \\ C \\ C \\ C \\ C$	D) 0
			III) In EX-OR gate, if the inputs are logically same then the output is A) 1 B) A C) B	D) 0
			iv) The universal gates are	D) 0
			A) AND and OR B) NOT and NOR C) NAND and NOR D) E	X-OR and EX-NOR.
		b.	Simplify the Boolean expression : y = AB + A(B + C) + B(B + C)	
÷.			y - AD + A(B + C) + B(B + C).	(04 Marks)
		C.	Implement $y = ABCD$ using, two input NOR gates.	(06 Marks)
		d.	Explain the operation of Fulladder and implement it using gates.	(06Marks)

-

• .

(16)

* * * 3 of 3

USN													10MAT21	l
Second Semester B.E. Degree Examination, June/July 2015														
~					E	ngiı	ıee	rin	g Matl	hen	natics – II			
Tin	ne: 3	hrs.										Ma	ax. Marks:100)
Note: 1. Answer any FIVE full questions, choosing at least two from each part. 2. Answer all objective type questions only on OMR sheet page 5 of the answer in 3. Answer to objective type questions on sheets other than OMR will not be value									iswer booklet. e valued.	×				
									PART -	A			Nº	
1	a.	Choo	se th	e cor	rect	answ	ers fo	r the	following	2 2	a a ² a i		(04 Marks))
		1)	The	gene	ral s	olutio	n for	the e	quation, x	(°p° +	$-3xyp + 2y^2 = 0$ is,	26	5	
			A) (x – y	-C)(x ⁻ -	+ y~ –	C) =	0		B) $(y - x - C)(x - C)$	$-\mathbf{y}^2 - \mathbf{C}$) = 0	
		ii)	C) (The	xy –	C)(x ⁻ y –	C) =	0 Natio	n ia ao luoh	la far	D) $(y-x-C)(x^2)$	(+C) =	= 0	
		iii)	A) x The	and singu	y lar s	soluti	B Don of) x ar the e	d p quation, ()	y – p:	C) y and p x) $(p-1) = p$ is,	o expres D) N	ss y in terms of None of these	,
			A) <u>:</u>	y(1+	e ^x)·	$+e^{x}$	B) x(1	$+e^{x})+e^{y}$	C)	$y(1 + e^{-x}) + x$	D) x(1-	$+e^{-x})+e^{x}+1$	
		iv)	Clair	uts e	quat	tion o	f sinj	ox co	sy = cospe	x sin y	y + p is,			
			A) :	y = p	x – s	sin ⁻¹ p	B) x =	$py - cos^{-1}$	¹ p	$C) y = xp + \cos^{-1} p$	D) :	$\mathbf{x} = \mathbf{p}\mathbf{y} + \sin^{-1}\mathbf{p}$	l
	b.	Solve	$: p^2$	+2p	yco	tx =	γ^2 .		X	$\langle \nabla \rangle$			(04 Marks))
	C.	Solve	$\therefore x^2$	$+p^2$	$\mathbf{x} = \mathbf{y}$	yp.			and the second				(06 Marks))
	d.	Solve	: y =	= 2px	к — у	$^{2}p^{3}$.	Take 2	X = 2	$\mathbf{x},\mathbf{Y}=\mathbf{y}^2.$				(06 Marks))
2	a.	Choo	se the	e cor	rect	answ	ers fo	r the	following	•			(04 Marks))
		i)	The	comp	olim	entary	' func	tion	for the diff	ferent	tial equation, $y'' - 6$	y' + 25y	y = 0 is,	
			A) e	$e^{2x}(C)$	$c_1 \cos \theta$	s3x +	$C_2 sir$	13x)			B) $e^{-2x}(C_1\cos 3x +$	$C_2 \sin 3$	(x)	
			C) e	$e^{3x}(C)$	$1 \cos^{1}$	54x +	$C_2 sir$	14x)			D) $e^{-3x}(C_1\cos 4x +$	$C_2 \sin^2$	4x)	
		ii)	The	displa	acen	nent i	n the	simp	le harmon	ic $\frac{d^2 x}{dt^2}$	$\frac{x}{2} = -\mu^2 x$ is,			
			A) ($C_1 \cos \theta$	sµt -	$-C_2$ si	nμt				B) $C_1 \cos\mu t + C_2 \sin^2\theta$	nμt		
		••••	C) ($C_1 \cos \theta$	sµt ±	C_2 si	nμt				D) $\cos\mu t \pm \sin\mu t$			
		111)	The	partic	cular	Integ	gral of	t (D ²	(+4)y = co	os2x	is,			
		XV	A) -	x cos	$\frac{2x}{2x}$		B)	$\frac{\cos}{8}$	$\frac{2x}{x}$		C) $\frac{\sin 2x}{8}$	D) -	$\frac{x \sin 2x}{4}$	
		iv)	The	soluti	ion d	of the	diffe	entia	l equation	n, y″-	$+3y' + 2y = e^{-3x}$ is,		-	
			A) ($C_1 e^{-x}$	+ C	$_{2}e^{2x} +$	$-\frac{1}{2}e^{-3}$	x			B) $C_1 e^x + C_2 e^{-2x} + C$	$\frac{1}{2}e^{-3x}$		
		Ú	C) C	e^{-x} -	+ C ₂	$e^{-2x} +$	$-\frac{1}{2}e^{-3}$	x			D) None of these			
	b.	Solve	$\frac{d^2y}{dx}$	<u>-</u> +4	y = 2	2^{-x} .							(04 Marks))
	c.	Solve	$\frac{d^3}{dx}$	$\frac{y}{3} + 8$	y =	x^2e^{-2}	K.						(06 Marks))
	d.	Solve	the s	syster	m: $\frac{c}{c}$	$\frac{\mathrm{lx}}{\mathrm{dt}} + 2$	x - 3	y = 5	$t, \frac{dy}{dt} - 3t$ 1 of 4	x + 2	$y=2e^{2t}.$		(06 Marks)	•

÷

• •

F

(04 Marks)

(04 Marks)

- 3 a. Choose the correct answers for the following :
 - i) The Wronskian of the differential equation, $(D+2)^2 y = \sec 2x$ is, A) e^{-2x} B) 2 C) e^{4x} D) e^{-4x}

ii) The complimentary function of the differential equation, $x^2y'' - xy' + y = \log x$ is, A) $C_1x + C_2x \log x$ B) $C_1x + C_2x^2$ C) $C_1\log x + C_2x^2$ D) $C_1x^2 + C_2x\log x$

- iii) The homogeneous linear differential equation whose auxillary equation has roots 1, -1 is,
 - A) $x^2y_2 xy_1 + y = 0$ B) $x^2y_2 + xy_1 - y = 0$ C) $x^2y_2 + xy_1 + y = 0$ D) $x^2y_2 - xy_1 - y = 0$
- iv) To find the series solution for the equation, $4(1-x)y_2 + 3y_1 + 2y = 0$, we assume the series solution as,

A)
$$y = \sum_{r=0}^{\infty} a_{r+1} x^{r+1}$$
 B) $y = \sum_{r=0}^{\infty} a_{R+r} x^{R+r}$ C) $y = \sum_{r=0}^{\infty} a_r x^{r}$ D) $y = \sum_{r=0}^{\infty} a_r x^{R+r}$

b. By the method of variation of parameters, solve $\frac{d^2y}{dx^2} + y = \frac{1}{1 + \sin x}$. (04 Marks)

- c. Solve: $(2x+3)^2 \frac{d^2y}{dx^2} + 6(2x+3)\frac{dy}{dx} + 6y = \log(2x+3)$. (06 Marks)
- d. Obtain the Frobenius-type series solution for the equation, $x \frac{d^2y}{dx^2} + \frac{dy}{dx} y = 0$. (06 Marks)
- 4 a. Choose the correct answers for the following :
 - i) The partial differential equation obtained from, $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ is,

A)
$$2 = xp + yq$$

B) $z = xp + yq$
C) $x = xp + yq$
D) $2z = xp + yq$
The partial differential equation obtained from, $z = e^{my}\phi(x - y)$ is.

ii) The partial differential equation obtained from, $z = e^{iny}\phi(x - y)$ is, A) px + q = mz B) p + q + mz = 0 C) xp + qy = mz D) p + q = mz

iii) General solution of the equation
$$\frac{\partial^2 Z}{\partial x \partial y} = x^2 y$$
 is,

A) $\frac{x^3y^2}{6} + f(y) + g(x)$ B) $\frac{x^3y^2}{6} + f(y)$ D) None of these

iv) To solve $u_{xx} - 2u_x + u_t = 0$ by the method of separation of variables, the trial solution is,

A)
$$X(x)T(x)$$
 B) $X(x)T(t)$ C) $X(x)\sqrt{T(t)}$ D) $\sqrt{X(x)T(t)}$

b. Form a partial differential equation by eliminating the arbitrary functions f and g from the relation, z = f(y+2x) + g(y-3x). (04 Marks)

c. Solve the equation:

$$\frac{\partial^2 z}{\partial x \partial y} + 9x^2y^2 = \cos(2x - y)$$
 by direct integration, given that $z = 0$ when $y = 0$ and $\frac{\partial z}{\partial y} = 0$
(06 Marks)

when
$$x = 0$$
.
d. Solve : $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$ (06 Marks)

1 S a. Choose the correct answers for the following : (04 Marks)
i) The value of
$$\int_{1}^{1} \int_{2}^{1} xy dy dx}$$
 is,
A) 9/2 B) 3/4 C) 2/3 D) 4/5
ii) $\int_{1}^{1} \int_{1}^{1} xy^{2} dx dy dz =$ _______
A) 2 B) 3 C) 1 D) 3/2
iii) $\int_{0}^{1} x^{3} e^{-4x^{2}} dx =$ _______
A) 21 B) 32 C) 23 D) 1/32
iv) $\Gamma(-7/2) =$ _______
A) $\frac{15}{32} \sqrt{\pi}$ B) $\frac{17}{40} \sqrt{\pi}$ C) $\frac{13}{55} \sqrt{\pi}$ D) $\frac{16}{105} \sqrt{\pi}$
b. Evaluate $\int_{0}^{1} \int_{1}^{1} x^{2} + y^{2} dy dx}$ by changing the order of integration. (04 Marks)
c. Evaluate $\int_{0}^{1} \int_{1}^{1} x^{2} + y^{2} dy dx}$ by transforming to polar coordinates. (06 Marks)
d. Prove that $\int_{0}^{1} \frac{x^{2}}{\sqrt{1-x^{2}}} dx \times \int_{0}^{1} \frac{1}{\sqrt{1+x^{2}}} dx = \frac{\pi}{4\sqrt{2}}$ (06 Marks)
6 a. Choose the correct answers for the following : (04 Marks)
i) If $\vec{f} = 3xy\hat{1} - y^{2}\hat{j}$, then $\int_{0}^{1} \vec{f} \cdot d\vec{r}$ from (0, 0) to (1, 2) along $y = 2x^{2}$ is,
A) $6/7$ B) $-7/6$ C) $7/6$ D) $-6/7$
ii) If V is the volume obtained by a closed surface S and \vec{F} is a continuously differentiable vector function then $\iint_{0} dx + rdy$
A) $\iint_{0}^{1} (\frac{dx}{dx} - \frac{dM}{dy} B) \iint_{0}^{1} (\frac{dx}{dy} - \frac{dM}{dx} - \frac{dM}{dy} C) \iint_{0}^{1} (\frac{dX}{dx} + \frac{dM}{dy} dx) \iint_{0}^{1} (\frac{dX}{dx} - \frac{dM}{dx} B) \iint_{0}^{1} (div \vec{f} dx =$ _______
A) 0 B) $\iint_{0}^{1} \vec{f} x \cdot dx$ C) $\iint_{0}^{1} (dx + \frac{dM}{dy} - D) \iint_{0}^{1} (\frac{dX}{dy} + \frac{dM}{dx} - \frac{dM}{dx} B) \int_{0}^{1} (div \vec{f} dx - C) \int_{0}^{1} (curl \vec{f}) \cdot dx D)$ None of these
b. Evaluate $\iint_{0}^{1} \vec{f} \cdot dx$ where $\vec{f} = yz\hat{1} + 2y^{2}\hat{j} + xz^{2}\hat{k}$ and S is the surface of the cylinder $x^{2} + y^{2} = 9$ contained in the first octant between $z = 0$ and $z = 2$. (04 Marks)
c. Verify Greens theorem for $\int_{0}^{1} (xy + y^{2}) + xz^{2}\hat{k}$ for the upperhalfofthe sphere $x^{2} + y^{2} + z^{2} - 1$. (06 Marks)
d. Verify Stoke's theorem for $\vec{f} = (2x - y)\hat{i} - yz\hat{i}\hat{k}$ for the upperhalfofthese phere $x^{2} + y^{2} + z^{2} - 1$. (06 Marks)

.

.

7 a. Choose the correct answers for the following :
()
$$L\{t^{k}e^{-t}\} =$$

() $24/(s^{-3})^{k}$ () $24/(s-3)^{k}$ () $24/(s+3)^{k}$ () $24/(s+4)^{k}$
(i) $L\{\frac{1}{4t}\} =$
(i) $L[\frac{1}{4t}] =$
(i) $L[\frac{1}{4t}] =$
(i) $L[\frac{1}{4t}] =$
(i) $L[\frac{1}{4t}] =$
(i) $L[\frac{1}{4t}] =$
(i) $L[\frac{1}{4t}] =$
(i) $L[\frac{1}{4t}] =$
(i) $L[\frac{1}{4t}] =$
(i) $L[\frac{1}{4t}] =$
(i) $L[\frac{1}{4t}] =$
(i) $L[\frac{1}{4t}] =$
(i) $L[\frac{1}{4t}] =$
(i) $L[\frac{1}{4t}] =$
(i) $L[\frac{1}{4t}] =$
(i) $L[\frac{1}{4t}] =$
(i) $L[\frac{1}{4t}] =$
(i) $L[\frac{1}{4t}] =$
(i) $L[\frac{1}{4t}] =$

10CIP18/28

	USN					Question Paper Version : C		
	I / II Semester B.E Degree Examination, June/July 2015							
		CONST	TUTION OF	INDIA A	ND PROFES	SIONAL ETHICS		
	Time: 2 hrs.] [Max. Marks: 50							
	INSTRUCTIONS TO THE CANDIDATES							
	1. Ar	iswer all th	ne fifty question	s, each que	estion carries on	e mark.		
	2. Us	e only Bla	ick ball point p	en for writ	ing / darkening	the circles.		
	3. Fo	r each qu	estion, after se	lecting yo	ur answer, dar	ken the appropriate circle		
	CO	rrespondi	ng to the same	question 1	number on the	OMR sheet.		
	4. Da	maging (e same que	estion makes the	answer invalid.		
	5. Da	phibited.	verwriting, us	sing whit	eners on the	OMR sheets are strictly		
1.	Who has the a) Suprem	he power to 1e Court	b establish a com b) President	non High C	Court for two or m c) Union Law	nore states and Union Territories? Minister d) Parliament		
2.	As applied statement,	d to engin discarding	the rest is called,	and testing	g, retaining the	data to draw a non-contradicto	ory	
	a) 11111111	ing	D) Cooking		c) Scanning	a) Skimming		
3.	Which of t a) British (he followin Constitution	ng exercized the r n b) U.S. Consti	nost profou tution c)	nd influence in fr Irish Constitution	raming the Indian Constitution? d) The Govt. of India Act, 1935	5	
4.	Judges of t a) 58 years	the Suprem	e Court of India b) 60 years	now retire a	t the age of, c) 62 years	d) 65 years		
5.	A compou	nd measure	of the probabilit	y and magr	itude of adverse of	effect is known as,		
	a) Comper	isation	b) Benefit		c) Risk	d) Accident		
6.	Which fun a) Art.20	damental ri	ights article is ent b) Art.21	forceable ev	c) Both (a) & ((b) d) None of these		
7.	Conflict of	f interest m	ay be,					
	a) Potentia	.1	b) False		c) Imaginary	d) Created		
8.	A money l no action i	oill passed s taken by	by the Lok Sabh the Rajya Sabha	a is deemec within,	l to have been pa	assed by the Rajya Sabha also who	en	
	a) 10 days		b) 14 days		c) 24 days	d) 30 days		
9.	The number a) 40	er of memb	ers in the state le b) 60	gislative as	semblies of Goa a c) 80	and Mizoram states are, d) 30		

10CIP18/28

, a

.

10.	The preamble of the Indi a) Justice	an Constitution resolves to b) Liberty and equality	o secure to all its citizens, c) Fraternity	d) All of these	
11.	Which one of the follow: a) Maternity Relief b)	ng is not a Directive Princ Adult Education c) Impre	iple of State Policy? ovement of Public Health	d) Free legal aid to poor	
12.	This is not impediment to a) Fear	b) Self deception	c) Ignorance	d) Self respect	
13.	After declaration of fina approval by the Parliame	ncial emergency by the lent?	President, what is the per	iod of operation without	
	a) Three months	b) Four montins	c) I wo months	d) indefinitely	
14.	This is not one of the req a) Has completed the age c) Must be a graduate	uired qualifications to be a of 35 years	appointed as the Governor b) Must be an Indian Citi d) Should not hold any o	of a State. izen ther office of profit	
15.	In the Union Governmenta) President	t the Council of Ministers b) Prime Minister	is collectively responsible c) Lok Sabha	to the, d) Parliament	
16.	Which one of the follows a) Right against exploita c) Right to constitutional	ng is not a fundamental R tion remedies	Right? b) Right to property d) Cultural and Educational rights		
17.	One of the aims of engina) Inspire engineers to ab) Stimulate the moral ic) Acquire new skills ind) Make Engineers self	eering ethics is to, acquire in depth knowledge magination Engineering, Testing and confident in discharging th	e in their field. Research heir duties		
18.	Directive Principles, met the President are adopted a) U.K.	hod of election of Preside from the constitution of, b) U.S.A	nt & nomination of 12 me c) Ireland	embers to Rajya Sabha by d) Germany	
19.	Which Article of the Cor a) Art.32	stitution empowers high c b) Art.214	courts to issue writs of vari c) Art.224	ous kinds? d) Art.226	
20.	Who nominates two Ang a) Speaker	lo-Indian members to the b) Prime Minister	house of the people? c) President	d) Vice President	
21.	Under the Government of in the Electorate system?	of India Act, 1935, which	communities were provide	ed separate representation	
	a) Sikns, Europeans	b) Indian Christians	c) Aligio-Indialis	u) An or mese	
22.	Part IV of the Indian Con a) Fundamental Duties	nstitution deals with b) Fundamental Rights c)) Directive principles & sta	te policy d) Preamble	
23.	Who is the Executive He a) Chief Minister	ad (Constitutional) of the b) Governor	State Government? c) President	d) Prime Minister	
		C			

10CIP18/28

20

24.	Whose role has become significant as the Guardian a) President b) Prime Minister c) Suprem	of fundamental rights? The Court and High Court	d) Parliament	
25.	The term of members of Rajya Sabha is,a) 5 yearsb) 6 yearsc) Sat	me as that of Lok Sabha	d) 2 years	
26.	Which House shall not be a subject for dissolution? a) Lok Sabha b) Council of States c) Hous	e of the people d) Stat	e Legislative Assembly	
27.	The minimum age prescribed for the membership a) 25 years b) 30 years	of a State Legislative Coun c) 35 years	cil is, d) 40 years	
28.	Mandal commission deals with, a) Reservation for backward classes people c) Laws relating to sexual harassment	b) Rights of the minorityd) Laws relating to child labour		
29.	Who are not entitled to form Union/Association?a) Entrepreneursb) Teachers	c) Police	d) Students	
30.	"Fault Tree" is used.a) In engineering testingc) To assess the accuracy of the research work	b) To trace the fault in engineering workd) To assess the risk		
31.	Which writ is issued by a High Court or the Suprelegal duty that it was not performing?a) Writ of Certiorari b) Writ of Habeas corpus	me court to compel a publ c) Writ of Mandamus d	ic authority to perform a l) Writ of Quo Warranto	
32.	The owner of "Patent Right" retains his patent right a) 20 b) 50	t foryears. c) 75	d) 100	
33.	Who are considered to be vulnerable group? a) Scheduled castes and Scheduled tribes c) Other backward classes	b) Women and Childrend) All of these		
34.	Unless approved by the state legislature, the ord maximum period of, a) Two months b) Three months	linance issued by the Go c) Six months	vernor remains in for a d) One year	
35.	Who among the following is / are not appointed by a) Governors of the states c) Vice President	the President of India? b) Chief Justice and Judg d) Prime Minister	es of High Courts	
36.	Which of the following Articles contain Directive H a) Art.30 to 49 b) Art.36 to 51	Principles of state Policy? c) Art.42 to 56	d) Art.28 to 48	
37.	"Minimalist View" means a) A concept of responsibility c) A ministerial view	b) A narrow thinkingd) A novel plan to minim	ize loss	

-C3-

. . . . k

38.	Which article of the Indian constitution deals with the procedure of amendment of the constitution?a) Art. 366b) Art. 368c) Art. 370d) Art. 372					
39.	 The Directive principle of state policy to be followed by the state for securing economic justice does not include. a) To secure uniform civil code b) Equal pay for equal work for both men and women c) To promote cottage industries d) Protection of health and strength of workers 					
40.	The preamble of the Indian Constitution was amended during the year.a) 1974b) 1976c) 1978d) 1980					
41.	The fundamental duties under the Indian constitution are provided by,a) An order of the Presidentc) An order of the supreme courtb) An Amendment to the constitutiond) An Act of the Parliament					
42.	"Easy Day", "Big Bazar" and "More" are examples of, a) Trade secret b) Patent c) Trade mark d) Copy right					
43.	In the final form of the constitution adopted on 26 th November, 1949, how many Articles and Schedules were there? a) 397 Articles and 9 Schedules c) 396 Articles and 7 Schedules d) 395 Articles and 8 Schedules d) 395 Articles and 10 Schedules					
44.	Who is the Supreme commander of Armed Forces in India? a) Minister of Defence b) Prime Minister of India c) President of India d) The commander-In-Chief					
45.	Under whose advice, President of India appoints Regional Election Commissioner? a) Prime Minister b) Chief Election Commissioner c) Home Minister d) Chief Appointment Officer					
46.	One of the ways of misusing the truth is, a) Failure to seek out the truth c) Making confused statementb) Exaggerating the truth d) Making totally false statement					
47.	After Independence who decided to determine the future Constitution of India? a) Jawahar Lal Nehru b) Sardar Vallabh Bhai Patel c) Constituent Assembly d) Mahatma Gandhi					
48.	The Chief Election Commissioner of India holds office for a period of, a) Six years b) Six years or the age of 65 years which ever is early d) Three years					
49.	Which Constitutional Organ has the power to amend the Constitution of India?a) Judiciaryb) Executivec) Legislatived) Parliament					
50.	Who has the Authority to approve President's Rule (State Emergency) in the state?a) Parliamentb) Lok Sabhac) State Legislatured) Council of states					

* * * * *

-C4-

			10CIV18/28					
USN		Question Pap	er Version : D					
¢	First/Second Semester B.E Degree Examination, June/July 2015 Environmental Studies							
	(COMMON 7	FO ALL BRANCHES)	.00					
Time	e: 2 hrs.]		[Max. Marks: 50					
1	Answer all the fifty questions and	ONS TO THE CANDIDA	TES 8.					
2	Use only Black hall point pop for	or writing (dorkening the size						
2	Ear and quastion after select	of writing / darkening the circ	cles.					
5	• For each question, after selection	ng your answer, darken th	e appropriate circle					
1	Derberging to the same question	on number on the OMR shee	t.					
4	Darkening two circles for the sam	the question makes the answer	r invalid.					
5	Damaging/overwriting, using	whiteners on the OMR	sheets are strictly					
	prohibited.	1997						
1.	Major purpose of most of the Dams aro a) Power generation b) Drinking wa	und the world is ter supply c) Flood control	d) Irrigation.					
2.	 Which of the following statement is false a) Soil erosion effects the productivity of agriculture fields b) It takes 300 years for one inch of agricultural top soil to form c) The amount of erosion depends on soil type, slope, drainage pattern and crop management practices. d) Soil erosion help to retain water and nutrients in the root zone 							
3.	Plants use has for photosynth a) Oxygen b) Methane	esis. c) Nitrogen	d) Carbon dioxide.					
4.	The major objectives of family welfare a) Disease control c) employment generation	programs in India is b) population growth d) None of these.	rate control					
5.	The first International Earth Summit wa a) Johannesh burg b) Rio de Janeiro	as held at c) Kyoto	d) Stockholm.					
6.	Wind energy generation depends on a) Direction of wind b) Velocity of	wind c) Humidity	d) precipitation.					
7.	Which is the source of energy that can b a) Coal b) petroleum	be replaced at the same rate at v c) Oil	vhich it is used? d) Biomass.					

10CIV18/28

	8.	Sulphur occurs in soil a) Oxides of Zn & Fe d) Sulphides of Zn & I	and rocks in the form of b) Sulphates of Fe	Zn & Fe	c) Nitrates of	Zn & Fe				
	9.	Solar radiation consist a) UV	s of b) Visible light	c) Infrare	d	d) All of these.				
	10.	The most important fu a) U - 235	el used by nuclear power b) U - 238	r plant is c) U - 245	5	d) U – 248.				
	11.	The most important remedy to avoid negative impact due to industrialization is a) Industry should be closed b) Don't allow new Industrial units c) Industry should treat all the wastes generated by it before disposal d) Industries should be shifted far away from human habitats.								
	12.	The permissible range a) 6 to 9	of pH for drinking water b) 6.5 to 7.5	as per the Ind c) 6 to 8.5	dian standards	is d) 6.5 to 8.5.				
	14.	Noise is a) Loud sound b) Unwanted sound c) Constant sound d) sound of high frequency								
	15.	India's position in the a) 5 th	Bio-gas plants globally b) 2 nd	c) 4 th		d) 7 th				
	16.	Urbanization is a) Local environment c) Both a) and b)	al issue	b) National environmental issued) Not at all an issue						
	17.	Environmental protect a) 51 – A (g)	ion is the fundamental du b) 48 – A	c) 47	tizen of India	under the article. d) 21.				
	18.	Excess of iron in wate a) colour	r is likely to cause b) Taste	c) hardnes	\$\$	d) All of the above.				
	19.	Which of the followin a) Atmosphere	g environmental spheres b) Lithosphere	has least stora c) Hydros	age capacity for sphere	or matter? d) Biosphere.				
	20.	Which of the followin a) Fungi	g is a biotic component o b) Solar light	f an ecosyster c) Tempe	m rature	d) Humidity.				
	21.	In complex ecosystem a) Poor	the degree of species div b) High	versity is c) Mediur	n	d) None.				
	22.	The process of movem a) Transpiration	nent of nutrients from soi b) Evapo transpiration - D2	l by the acid r c) Leachi	rain is ing	d) Infiltration				

10CIV18/28

22

23.	Ozone layer thickness a) ppm	is measured in b) ppb	c) Decibels	d) Dobson units.	
24.	Freon's are : a) HFC	b) CFC	c) NFC	d) Hydrocarbons.	
25.	The adverse effect of a) Water pollution	modern agriculture is b) Soil degradation	c) Water logging	d) All the above.	
26.	India has the largest si a) Manganese	hare of which of the foll b) Mica	lowing? c) Copper	d) Diamond.	
27.	Excess fluorides in dr. a) Blue babies	inking water is likely to b) Fluorosis c)	cause taste and odour d) Inte	stinal irritation.	
28.	The primary producer a) Chlorophyll contai	s in a forest ecosystem a ning trees and plants	are o) Herbivores c) Carnivor	res d) Bacteria.	
29.	Access to food is main a) Household income c) Human resources	b) Food assistance pd) Society/community	rogrammes ty.		
30.	Which of the followin a) India	g is having high popula b) China	tion denstiy c) USA	d) Western Europe.	
31.	Which of the following is a producer in an ecosystem a) plant and some bacteria capable of producing their own food b) Animals c) Human beings d) Fish.				
32.	The basic requirement a) Industrialization	s of human beings are p b) Agriculture	orovided by c) Nature d) Urbaniza	ation.	
33.	E.I.A is related to a) Resource conservat d) All of the above	ion b) Efficient equip	oment/process c) Waste min	nimization.	
34.	Which of the followin a) Air pollution from a	g are major environmer lust b) Water pollution	ntal issues involved in minin n c) Soil degradation	g? d) All of the above.	
35.	About% o a) 53%	of the earth's surface is of b) 19%	covered by water c) 71%	d) 90%	
36.	Major causes of defore a) Shifting cultivation d) All of these.	estation are b) Fuel requirement	ts c) Raw materials for in	ndustries	
37.	Biogas is produced by a) Microbial activity	b) Harvesting crop	c) Both a) & b) d) None	e of the above.	
			2		

- D3 -

10CIV18/28

x 5

• ¥

38.	Which of the following is not a renewable source of a) Fossil fuel b) Solar energy	of energy c) Tidal wave energy	d) Wind energy.			
39.	The major automobile pollutants includea) Co, NOx, Hydrocarbons & SPMb) Co2, NOx, Hydrocarbons & SPMd) Co, NO _x , Hydrocarbor l) Co, NO _x , Freon's & SI	as and CH_4 PM.			
40.	Increase in asthma attacks has been linked to higha) Nitrogenb) Air-borne dust particles	levels of c) Oxygen	d) CO.			
41.	Which green house gas is known as colorless, non- a) Methaneb) Co2c) Nitrous or	-flammable sweetish odo xide d) sulfur h	or and laughing gas? exafluoride			
42.	The pH value of the acid rain water is a) 5.7 b) 7.0	c) 8.5	d) 7.5			
43.	Which of the following is the purpose of animal hua) Conservation of animal husbandrybc) Conservation of wildlifed	usbandry?) Production of meat l) Conservation of forests	s.			
44.	Bhopal Gas tragedy caused due to leakage of a) Methyl Iso Cyanate (MIC) b) Sulfur dioxide	c) Mustard gas	d) Methane.			
45 .	Which of the following is NGO: a) Narmada Bachao Andolan b) CPCB	c) KSPCB	d) None.			
46.	The objectives of the Wild life (protection) Act 19' a) to preserve the biodiversity b) To maintain es c) Protection & conservation of wild life d	72 is : ssential ecological and 1 I) All.	ife supporting system			
47.	What is the unit of measurement of sound? a) dB b) Decibel	c) Both a) & b)	d) None of these.			
48.	 B.O.D measures a) Industrial pollution b) Air pollution c) Polluting capacity of effluents d) D.O needed by the microbes for decomposition. 					
49.	The Air (Prevention and control of pollution) Act v a) 1981 b) 1996	was enacted in the year c) 2000	d) 1974.			
50.	The central pollution control Board was established under the provision of a) Environmental (protection) Act 1986 b) Air (prevention and control) Act 1981 c) Water (prevention and control of pollution) Act 1974 d) All of the above.					
	* * * * *					

- D4 -

USN			10MAT21			
	Se	cond Semester B.E. Degree Examination, Ju	ine/July 2015			
Engineering Mathematics – II						
Time	: 3 hrs.		Max. Marks:100			
Note:	1. Ans 2. Ans 3. Ans	swer any FIVE full questions, choosing at least two from wer all objective type questions only on OMR sheet pag wer to objective type questions on sheets other than OM	n each part. e 5 of the answer booklet. IR will not be valued.			
		$\underline{PART} - \underline{A}$. No			
1 a	. Cho	ose the correct answers for the following :	(04 Marks)			
	1)	The general solution for the equation, $x^2p^2 + 3xyp + 2y^2 =$	0 is,			
		A) $(x - y - C)(x^2 + y^2 - C) = 0$ B) $(y - x - C)(x^2 + y^2 - C) = 0$	$C(\mathbf{x} - \mathbf{y}^2 - \mathbf{C}) = 0$			
	::)	C) $(xy - C)(x^2y - C) = 0$ The given differential equation in a latter f (y - x - 0)	$C)(x^2y + C) = 0$			
	iii)	A) x and y B) x and p C) y and p The singular solution of the equation, $(y - px)(p-1) = p$ i	D) None of these s,			
		A) $y(1+e^x) + e^x$ B) $x(1+e^x) + e^y$ C) $y(1+e^{-x}) + x$	D) $x(1+e^{-x})+e^{x}+1$			
	iv)	Clairuts equation of $\sin px \cos y = \cos px \sin y + p$ is,				
		A) $y = px - sin^{-1}p$ B) $x = py - cos^{-1}p$ C) $y = xp + c$	$os^{-1}p$ D) $x = py + sin^{-1}p$			
b	. Solv	$ye: p^2 + 2py \cot x = y^2.$	(04 Marks)			
С	· Solv	$ye: x^2 + p^2 x = yp.$	(06 Marks)			
d	. Solv	$y = 2px - y^2p^3$. Take $X = 2x, Y = y^2$.	(06 Marks)			
2 a	. Cho	ose the correct answers for the following :	(04 Marks)			
	i)	The complimentary function for the differential equation,	y'' - 6y' + 25y = 0 is,			
		A) $e^{2x}(C_1 \cos 3x + C_2 \sin 3x)$ B) $e^{-2x}(C_1 \cos 3x + C_2 \sin 3x)$	$s3x + C_2 sin 3x$)			
		C) $e^{3x}(C_1\cos 4x + C_2\sin 4x)$ D) $e^{-3x}(C_1\cos 4x + C_2\sin 4x)$	$s4x + C_2 \sin 4x$)			
	ii)	The displacement in the simple harmonic $\frac{d^2x}{dt^2} = -\mu^2 x$ is,				
		A) $C_1 \cos\mu t - C_2 \sin\mu t$ B) $C_1 \cos\mu t +$	$C_2 \sin \mu t$			
		C) $C_1 \cos\mu t \pm C_2 \sin\mu t$ D) $\cos\mu t \pm \sin\mu t$	nμt			
	iii)	The particular integral of $(D^2 + 4)y = \cos 2x$ is,				
	AN AN	A) $\frac{x \cos 2x}{4}$ B) $\frac{\cos 2x}{8}$ C) $\frac{\sin 2x}{8}$	D) $\frac{x \sin 2x}{4}$			
) IV)	The solution of the differential equation, $y'' + 3y' + 2y = e^{-3}$	is,			
		A) $C_1 e^{-x} + C_2 e^{2x} + \frac{1}{2} e^{-3x}$ B) $C_1 e^x + C_2 e^{2x} + \frac{1}{2} e^{-3x}$	$e^{-2x} + \frac{1}{2}e^{-3x}$			
		C) $C_1 e^{-x} + C_2 e^{-2x} + \frac{1}{2} e^{-3x}$ D) None of the	ese			
b	. Solv	$\frac{d^2 y}{dx} + 4y = 2^{-x}.$	(04 Marks)			
C.	· Solv	$ye: \frac{d^3y}{dx^3} + 8y = x^2 e^{-2x}$	(06 Marks)			
d	. Solv	We the system: $\frac{dx}{dt} + 2x - 3y = 5t$, $\frac{dy}{dt} - 3x + 2y = 2e^{2t}$. 1 of 4	(06 Marks)			

.

(04 Marks)

(04 Marks)

- 3 a. Choose the correct answers for the following :
 - i) The Wronskian of the differential equation, $(D+2)^2 y = \sec 2x$ is, A) e^{-2x} B) 2 C) e^{4x} D) e^{-4x}

ii) The complimentary function of the differential equation, $x^2y'' - xy' + y = \log x$ is, A) $C_1x + C_2x \log x$ B) $C_1x + C_2x^2$ C) $C_1\log x + C_2x^2$ D) $C_1x^2 + C_2x\log x$

- iii) The homogeneous linear differential equation whose auxillary equation has roots 1, -1 is,
 - A) $x^2y_2 xy_1 + y = 0$ B) $x^2y_2 + xy_1 - y = 0$ C) $x^2y_2 + xy_1 + y = 0$ D) $x^2y_2 - xy_1 - y = 0$
- iv) To find the series solution for the equation, $4(1-x)y_2 + 3y_1 + 2y = 0$, we assume the series solution as,

A)
$$y = \sum_{r=0}^{\infty} a_{r+1} x^{r+1}$$
 B) $y = \sum_{r=0}^{\infty} a_{R+r} x^{R+r}$ C) $y = \sum_{r=0}^{\infty} a_r x^{r}$ D) $y = \sum_{r=0}^{\infty} a_r x^{R+r}$

b. By the method of variation of parameters, solve $\frac{d^2y}{dx^2} + y = \frac{1}{1 + \sin x}$. (04 Marks)

- c. Solve: $(2x+3)^2 \frac{d^2y}{dx^2} + 6(2x+3)\frac{dy}{dx} + 6y = \log(2x+3)$. (06 Marks)
- d. Obtain the Frobenius-type series solution for the equation, $x \frac{d^2y}{dx^2} + \frac{dy}{dx} y = 0$. (06 Marks)
- 4 a. Choose the correct answers for the following :
 - i) The partial differential equation obtained from, $2z = \frac{x^2}{a^2} + \frac{y^2}{b^2}$ is,
 - A) 2 = xp + yq B) z = xp + yq C) x = xp + yq D) 2z = xp + yqThe partial differential equation obtained from, $z = e^{imy}\phi(x - y)$ is,
 - ii) The partial differential equation obtained from, $z = e^{i\pi y}\phi(x y)$ is, A) px + q = mz B) p + q + mz = 0 C) xp + qy = mz D) p + q = mz
 - iii) General solution of the equation $\frac{\partial^2 z}{\partial x \partial y} = x^2 y$ is,
 - A) $\frac{x^3y^2}{6} + f(y) + g(x)$ B) $\frac{x^3y^2}{6} + f(y)$ D) None of these
 - iv) To solve $u_{xx} 2u_x + u_t = 0$ by the method of separation of variables, the trial solution is,

A)
$$X(x)T(x)$$
 B) $X(x)T(t)$ C) $X(x)\sqrt{T(t)}$ D) $\sqrt{X(x)T(t)}$

- b. Form a partial differential equation by eliminating the arbitrary functions f and g from the relation, z = f(y + 2x) + g(y 3x). (04 Marks)
- c. Solve the equation: $\frac{\partial^2 z}{\partial x \partial y} + 9x^2y^2 = \cos(2x - y)$ by direct integration, given that z = 0 when y = 0 and $\frac{\partial z}{\partial y} = 0$, (06 Marks)

when
$$x = 0$$
.
d. Solve : $(x^2 - yz)p + (y^2 - zx)q = z^2 - xy$ (06 Marks)

		<u>PART – B</u>			
5	a.	Choose the correct answers for the following : (04 Mar			
integer integer		i) The value of $\int_{1}^{4} \int_{0}^{\sqrt{4-x}} xy dy dx$ is,			
		A) 9/2 B) 3/4 C) 2/3 D)	4/5		
		ii) $\int_{0}^{1} \int_{0}^{2} \int_{0}^{2} xyz^{2} dx dy dz = $			
		A) 2 B) 3 C) 1 D) 3/	/2		
		iii) $\int_{0} x^{3} e^{-4x^{2}} dx = $	9: N		
		A) 21 B) 32 C) 23 D) 1 iv) $\Gamma(-7/2) = $	/32		
		A) $\frac{15}{32}\sqrt{\pi}$ B) $\frac{17}{46}\sqrt{\pi}$ C) $\frac{13}{55}\sqrt{\pi}$ D) $\frac{14}{10}$	$\frac{6}{05}\sqrt{\pi}$		
	b.	Evaluate $\int_{0}^{1} \int_{x}^{1} \frac{x}{\sqrt{x^2 + y^2}} dy dx$ by changing the order of integration.	(04 Marks)		
	c.	Evaluate $\int_{0}^{a} \int_{0}^{\sqrt{a^2-x^2}} \sqrt{x^2+y^2} dy dx$ by transforming to polar coordinates.	(06 Marks)		
	d.	Prove that $\int_{0}^{1} \frac{x^2}{\sqrt{1-x^4}} dx \times \int_{0}^{1} \frac{1}{\sqrt{1+x^4}} dx = \frac{\pi}{4\sqrt{2}}$	(06 Marks)		
6	a.	Choose the correct answers for the following :	(04 Marks)		
		i) If $\vec{f} = 3xy\hat{i} - y^2\hat{i}$ then $\int \vec{f} \cdot d\vec{r}$ from (0, 0) to (1, 2) along $y = 2x^2$ is	()		
		$\int_{C} \int_{C}			
		A) 6/7 B) -7/6 C) 7/6 D)	-6/7		
		ii) If V is the volume obtained by a closed surface S and \vec{F} is a continuously			
		differentiable vector function then $\iiint_V \operatorname{div} \vec{F} \operatorname{dv} = $			
		A) 0 B) $\iint_{S} \vec{F} \times \hat{n} ds$ C) $\iint_{S} \vec{F} \cdot \hat{n} ds$ D) No	one of these		
		iii) Greens theorem in the plane is $\int_{C} Mdx + Ndy$			
		A) $\iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \right) dxdy B) \\ \iint_{R} \left(\frac{\partial M}{\partial y} - \frac{\partial N}{\partial x} \right) dxdy C) \\ \iint_{R} \left(\frac{\partial N}{\partial x} + \frac{\partial M}{\partial y} \right) dxdy D) \\ \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial y} \right) dxdy D) \\ \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial y} \right) dxdy D) \\ \iint_{R} \left(\frac{\partial N}{\partial x} - \frac{\partial N}{\partial y} \right) dxdy D) $	$\left(\frac{\partial N}{\partial y} + \frac{\partial M}{\partial x}\right) dx dy$		
		iv) Stokes theorem is $\int_{C} \vec{f} \cdot d\vec{r} =$			
		A) $\int_{s} (\operatorname{curl} \vec{f}) ds$ B) $\int_{s} (\operatorname{div} \vec{f}) ds$ C) $\int_{s} (\operatorname{curl} \vec{f}) \cdot \hat{n} ds$ D) No	one of these		
No.	b.	Evaluate $\iint_{S} \vec{f} \cdot \vec{n} ds$ where $\vec{f} = yz \hat{i} + 2y^2 \hat{j} + xz^2 \hat{k}$ and S is the surface of	the cylinder		
	c.	$x^{2} + y^{2} = 9$ contained in the first octant between $z = 0$ and $z = 2$. (04 N Verify Greens theorem for, $\int (xy + y^{2})dx + x^{2}dy$, where C is the closed curve made up			
		$\int_{C}^{J} e^{-\frac{1}{2}} e^{-\frac{1}{2}}$			
	d.	Verify Stoke's theorem for $\vec{f} = (2x - y)\hat{i} - yz^2\hat{j} - y^2z\hat{k}$ for the upper half of the sphere $x^2 + y^2 + z^2$			
			(06 Marks)		

7 a. Choose the correct answers for the following :
() (04 Marks)
i)
$$L\{t^{k}e^{-3}\}=$$

() (04 Marks)
ii) $L\{\frac{1}{\sqrt{k}}=\frac{1}{\sqrt{k}}=$
() $L\{t^{k}e^{-3}\}=$
() $L\{t^{k}e^{-3$